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Populations of globally coupled oscillators appear in different fields of physics, engineering, and life sciences. In
many situations, there is disorder in the coupling, and the coupling terms are not identical but vary, for example,
due to different coupling strengths and phase shifts. While the phenomenon of collective synchronization in oscillator
populations which attracted much interest in the last decades is well-understood in a regular situation, the influence
of disorder remains a subject of intensive current studies. The disordered case is relevant for many applications,
especially in neuroscience, where in the description of the correlated activity of neurons, one can hardly assume the
neurons themselves to be identical and the coupling between them to be uniform.

We explore large populations of rorators φk(t) (k = 1, . . . , N) interacting via random coupling functions:

µφ̈k + φ̇k = ωk + σξk(t) +H
(
{φj(t)}

)
, (1)

where each φk(t) is assumed to be a phase or an angle variable with a first-order (µ = 0) or a second-order(µ ̸= 0) in
time dynamics, respectively. Here, we assume that the individual phase dynamics of an oscillator is described within
the “standard” model as rotations with a natural frequency ωk, possibly with individual Gaussian white noises σξk(t).
In Eq. (1), we separate this individual dynamics and the coupling terms H

(
φ1(t), φ2(t), . . . , φN (t)

)
= H

(
{φj(t)}

)
.

Note that the model (1) with µ = 0 corresponds to the model of coupled phase oscillators which is most popular
because it can be directly derived for generic coupled oscillators from the original equations governing the oscillator
dynamics, in the first order in the small parameter describing the coupling. The model (1) with µ ̸= 0 are discussed
in the literature, for example, in the context of modeling power grads.

Next, we specify the coupling terms H
(
{φj(t)}

)
according to the Kuramoto-Daido and the Winfree approaches. In

both two cases, we assume that all the pairwise coupling terms are different, taken from some random distribution of
random functions. In this assumption that all the coupling terms are generally different, the coupling function in the
Kuramoto-Daido form as a function of phase differences (φj − φk) reads

HKD

(
{φj(t)}

)
=

1

N

N∑
j=1

Fjk(φj − φk). (2)

For the Winfree-type model, in a such case of the general randomness case, the action on the oscillator k from the
oscillator j is proportional to the product Sjk(φk)Qjk(φj), where Sjk(φk) is the j-th phase sensitivity function of the
unit k, and Qjk(φj) describe the force with which the element j is acting on the oscillator k:

HW

(
{φj(t)}

)
=

1

N

N∑
j=1

Sjk(φk)Qjk(φj). (3)

It is well known that, in the regular setups, the Kuramoto-Daido and the Winfree coupling functions can be
reformulated in terms of the Kuramoto-Daido order parameters Zm(t) which are defined as

Zm(t) =
1

N

N∑
j=1

eimφj(t) =
〈
eimφj(t)

〉
. (4)

One can obtain these representations representing the 2π-periodic coupling functions as Fourier series. We use these
expressions as “templates” for identifying the effective coupling functions in the case of random interactions.

Thus, we represent the functions Fjk(x), Sjk(x) and Qjk(x) describing random pairwise interactions in the
Kuramoto-Daido and the Winfree models via random complex Fourier coefficients fm,jk, sm,jk and qm,jk, respectively:

Fjk(x)=
∑
m

fm,jke
imx , Sjk(x)=

∑
m

sm,jke
imx , Qjk(x)=

∑
m

qm,jk e
imx , (5)

fm,jk=
1

2π

∫ 2π

0

dxFjk(x)e
−imx , sm,jk=

1

2π

∫ 2π

0

dxSjk(x)e
−imx , qm,jk=

1

2π

∫ 2π

0

dxQjk(x) e
−imx . (6)

Next, we assume statistical independence of the phases and the corresponding Fourier coefficients. We expect this
independence to be valid for a large population, where many different couplings influence each phase. This assumption
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Рис. 1: Behavior of the first order parameter ⟨|Z1|⟩ an ensemble of N=12×103 noisy rotators (1) with equal natural
frequencies (ωk = Ω) and coupling function F (x) = K

(
sin(x) + 4 sin(2x)

)
with K=1 in dependence on

√
σ for the

moment of inertia µ = 0.5. Green squares and blue circles are simulations without and with phase shifts,
respectively. We consider random phase shifts αjk distributed according to G(α) = (1 + cosMα)

/
2π with M = 1.

Thus, the effective coupling function is F(x) = 0.5K sin(x). For such coupling, the analytical expression (solid red
line) for the order parameter in dependence on the noise intensity σ2 can be written in the parametric (parameter

R) form: |Z1| = 2πRI20 (R)I1(R)
/(

2πRI20 (R) + µKI1(R)
)
, σ2 = K|Z1| /2R , where I0(R) and I1(R) are the

principal branches of the modified Bessel functions of the first kind with orders 0 and 1, respectively.

allows us to obtain the reduced coupling terms and conclude that the interaction is described with an effective
deterministic coupling. For the Kuramoto-Daido-type model, we arrive at the effective averaged coupling function,
Fourier modes of which are just ⟨fm,jk⟩:

1

N

N∑
j=1

Fjk(φj − φk) ⇒ 1

N

N∑
j=1

F(φj − φk) =
1

N

N∑
j=1

⟨Fjk(φj − φk)⟩ =
∑
m

⟨fm,jk⟩ e−imφkZm. (7)

For the random Winfree-type model, we have

1

N

N∑
j=1

Sjk(φk)Qjk(φj) ⇒ S(φk)
1

N

∑
j

Q(φj)=⟨Sjk(φk)⟩
1

N

N∑
j=1

⟨Qjk(φj)⟩=
∑
m

⟨sm,jk⟩ eimφk

∑
m′

⟨qm′,jk⟩Zm′ . (8)

It is worth mentioning that because the Fourier transform is a linear operation, averaging the Fourier coefficients is
the same as averaging the functions. Thus, our main theoretical result is that one can reduce the dynamics of a large
population with random coupling functions to an effective ensemble without disorder, where the effective coupling
functions are averages of the original random coupling functions.

The relations (7) and (8) are derived in the case of general randomness of interactions, which includes a situation
where different coupling functions have different shapes. For example, some oscillators can be coupled via the first
harmonic coupling function, while others are coupled with the second harmonic coupling function. A particular
situation is one where all the shapes are the same, but the interactions differ in their coupling strengths and the phase
shifts. Using (7) and (8) in the case where the randomness is restricted to coupling strength and phase shifts, one
can see that the randomness of coupling strengths renormalizes the total coupling strength, but does not influence
the shape of the coupling function. In contradistinction, the randomness of the phase shifts changes the form of the
coupling function and the effective coupling function is the convolution operator of the original one with the phase
shift distribution density. Our exhaustive numerical simulations confirm this theoretical prediction (e.g., see Fig. 1).

Summarizing the results, we have considered different models of globally coupled phase oscillators and rotators. In
the case of a “maximal disorder”, all the coupling functions are distinct and random, sampled from some distribution.
Based on the assumption of independence of the phases and the coupling functions in the thermodynamic limit,
we derived the averaged equations for the phases, where effective deterministic coupling functions enter. A more
detailed consideration was devoted to the case where the shapes of the random coupling functions are the same, but
the amplitudes and the phase shifts are random. Then, the effective functions are renormalized convolutions of the
original coupling functions and the distribution densities of the phase shifts. In particular, if the distribution of the
phase shifts possesses just one Fourier mode, the effective coupling function will possess only this mode, too. This
property allows us to check the validity of the approach numerically because, for the one-mode coupling function,
there are theoretical predictions for the behavior of the order parameters.
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