

Dynamical ergodicity breaking and scaling relations for finite-time first-order phase transition

Yu-Xin Wu¹, Jin-Fu Chen^{1,2,*}, and H. T. Quan^{1,3,4,†}

¹School of Physics, Peking University, Beijing, 100871, China ²Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands ³Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China ⁴Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China E-mail: yuxinw@stu.pku.edu.cn, jinfuchen@lorentz.leidenuniv.nl,, htguan@pku.edu.cn

Abstract

Hysteresis and metastable states are typical features associated with ergodicity breaking in the first-order phase transition which occurs in the thermodynamics limit. When the system is guenched across a first-order phase transition, the excess work (enclosed area between the dynamic and static hysteresis) even exhibits universal scaling behavior. Nevertheless, for a system of finite size, how will the features of the first-order phase transitions persist remains unexplored. We study the scaling behavior of the excess work as a function of the quench rate in the Curie-Weiss model. We find the shrinking of the hysteresis when downsizing the system, and the crossover of the scaling of the excess work from $v^{2/3}$ to v. Our study elucidates the interplay between the quench rate and the relaxation rate (system size), which leads to the dynamical ergodicity breaking and different scaling behavior of the excess work.

1D mean-field Curie-Weiss model

where $A'_1 \approx -1.019$ and $A_1 \approx -2.338$ are zeros of Airy functions. $v^{2/3}$ scaling relation of the excess work

$$w_{\rm ex} \approx \frac{-A_1(1+\sqrt{1-\frac{1}{\beta J}})}{\left[4\sqrt{\beta J(\beta J-1)}\frac{\beta}{\tau_0^2}\right]^{1/3}}v^{2/3}.$$

• Crossover in the scaling relation from $v^{2/3}$ to v in finite N system

Table I. The scaling relation of the excess work w_{ex} with the quench rate v for different situations.

Finite-time isothermal process [34–39]	$w_{ m ex} \propto v$
Finite-time adiabatic process [40–45]	$w_{\rm ex} \propto v^2$
Finite-time first-order phase transition[63–69]	$w_{\rm ex} \propto v^{2/3}$
Finite-time second-order phase transition [22, 46]	$w_{\rm ex} \propto v^{\delta_1}$

