Dynamical ergodicity breaking and scaling relations
for finite-time first-order phase transition

nstituut-Lorentz, Universiteit Leiden, . Box 9506, 2300 RA Leiden,
3Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
4Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
E-mail: yuxinw@stu.pku.edu.cn, jinfuchen@lorentz.leidenuniv.nl,, htquan@pku.edu.cn

Hysteresis and metastable states are typical features associated with ergodicity breaking in the first-order phase transition\
which occurs in the thermodynamics limit. When the system is quenched across a first-order phase transition, the excess
work (enclosed area between the dynamic and static hysteresis) even exhibits universal scaling behavior. Nevertheless, for
a system of finite size, how will the features of the first-order phase transitions persist remains unexplored. We study the
scaling behavior of the excess work as a function of the quench rate in the Curie-Weiss model. We find the shrinking of the
hysteresis when downsizing the system, and the crossover of the scaling of the excess work from v2/3 to v. Our study
elucidates the interplay between the quench rate and the relaxation rate (system size), which leads to the dynamical
ergodicity breaking and different scaling behavior of the excess work. )
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