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Background 1: Tuning AI training algorithms
- example: stochastic gradient descent (SGD) w. momentum

https://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

η : Learning rate (Step size in gradient) 

B : Batch size ( # of samples in each gradient computation)
1-α : Momentum ( memory of previous gradients) 

W0 : Weights initialization (where to start training)
Stirring speed

Amount of ingredient to put in each time

Starting temperature

Batch Norm

Layer Norm

Drop out

Weight decay
……

Salt

Pepper

Spice

……



Details of SGD with momentum

η : Learning rate (Step size in gradient) 

B : Batch size ( # of samples in each gradient computation)
1-α : Momentum ( memory of previous gradients) 

W0 : Weights initialization (where to start training)
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�wt = vt = ↵vt�1 � ⌘gt

Adjustment to NN weights

Gradient for backpropagation
(Stochasticity depends on B)

Generally trial-and-error to 
determine these hyperparameters



Background 2: Edge of chaos in NN
- healthy biological neural networks
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Adaptive behaviour, cognition and emotion are the result of a bewildering variety of brain
spatio-temporal activity patterns. An important problem in neuroscience is to understand
the mechanism by which the human brain’s 100 billion neurons and 100 trillion synapses
manage to produce this large repertoire of cortical configurations in a flexible manner. In
addition, it is recognized that temporal correlations across such configurations cannot be arbi-
trary, but they need to meet two conflicting demands: while diverse cortical areas should
remain functionally segregated from each other, they must still perform as a collective, i.e.
they are functionally integrated. Here, we investigate these large-scale dynamical properties
by inspecting the character of the spatio-temporal correlations of brain resting-state activity.
In physical systems, these correlations in space and time are captured by measuring the cor-
relation coefficient between a signal recorded at two different points in space at two different
times. We show that this two-point correlation function extracted from resting-state func-
tional magnetic resonance imaging data exhibits self-similarity in space and time. In space,
self-similarity is revealed by considering three successive spatial coarse-graining steps while
in time it is revealed by the 1/f frequency behaviour of the power spectrum. The uncovered
dynamical self-similarity implies that the brain is spontaneously at a continuously changing
(in space and time) intermediate state between two extremes, one of excessive cortical inte-
gration and the other of complete segregation. This dynamical property may be seen as an
important marker of brain well-being in both health and disease.

Keywords: functional magnetic resonance imaging; self-similarity; resting state

1. INTRODUCTION

It is increasingly evident that brain regions are continu-
ously interacting even when the brain is ‘at rest’ and,
more importantly, that the functional networks uncov-
ered from resting data closely match those derived
from a wide variety of different activation conditions
[1,2]. Starting with the uncovering of coherent fluctu-
ations of functional magnetic resonance imaging
(fMRI) in time series of motor cortex [3], many other
findings have validated the notion of correlated networks
as a dynamical substrate of the resting brain. It has been
established that these networks, which can be separated
on the basis of their temporal features [4–6], are located

at consistent locations across subjects and are equally
detectable even during sleep [7] and anaesthesia [8].

These exciting findings provide a novel window to
observe the brain at work and, at the same time, high-
light our limited understanding of the functional
organization of the brain at large scales [9], compared
with the, often precise, knowledge we have of the
small (neural circuit level) scale. In particular, little is
known about how the cortex is able to solve the conflict-
ing dynamical demands imposed by the functional
segregation of local areas differing in their anatomy
and physiology, on one hand, and, on the other, their
global integration shown during perception and behav-
iour. This riddle is clearly pointed out by Tononi et al.
[10]: ‘traditionally, localizationist and holist views of
brain function have exclusively emphasized evidence
for either functional segregation or for functional inte-
gration among components of the nervous system.
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Background 2: Edge of chaos in NN
- artificial neural networks computation



Background 2: Edge of chaos in NN
- deep neural networks (feedforward) performance

Convolutional Net (CNN) DenseNetResidual Network

Edge of chaos

Optimal performance

Feng Ling et. al., Optimal Machine Intelligence at the edge of Chaos, arXiv preprint arXiv:1909.05176, 2020

Batch Norm Dropout Weight Decay Data Augmentation ……



Goal: Train the NN to “stay” at edge of chaos

Edge of 
Chaos



Subject: Single hidden layer feedforward NN
- Asymptotic order/chaos f(x)=tanh(Wx)

“Shirt”



Chaotic phase = SK Spin glass phase
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Wij ! Jij

FC with tanh activation SK spin glass model



Scaling of hyperparameters
– in order phase

η : Learning rate (Step size in gradient) 

B : Batch size ( # of samples in each gradient computation)
1-α : Momentum ( memory of previous gradients) 
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d =
⌘

(1� ↵)B

J2: normalized variance 
of weight matrix



Use linear scaling to control edge of chaos
- Optimal L2 regularization (weight decay)
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�wt = vt = ↵vt�1 � ⌘(gt + 2�wt)

Weight 
decay

λ: hyperparameter to tune decay strength
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Robust training at the edge of chaos
- against 20% label noise (shuffled)

The NN automatically avoids fitting wrong labels
and gives best test accuracies



Robust training at the edge of chaos (extreme)
- against 100% label noise (shuffled)

The NN refuses to fit noisy training data in the order phase
It fits more noisy training data as it gets more chaos



Summary
• Even for feedforward (and shallow) networks, asymptotic edge of 

chaos during training leads to optimal model performances.
• It also leads to robustness against label noise.
• To achieve optimal performance and robustness:
• Start in the order phase of the model
• Make the model to stay at edge of chaos while exploring optimal weight 

configurations – it will not overfit or underfit!

• Challenges:
• Complex NN architectures (like LLM) likely do not permit analytical 

solution for edge of chaos
• ‘Engineering’ solutions are needed to control the model to stay at the 

edge of chaos.


