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Outline

• Supercooled liquids and molecular glass
 
• A toy model: Sherrington – Kirkpatrick (SK) spin glass 

and the Nishimori line

• Random matrix formulation: gap opening and 
condensation at low temperatures

• Exact finite-size scaling at the spectral edge

• Separation of timescales and global reorganization 
near criticality

Ding Wang and LHT, arXiv 2405.142152



Supercooled 
liquids and 

molecular glass

Is glass a frozen liquid?
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Andrea Cavagna, “Supercooled liquids for 
pedestrians”, Phys Reports 476: 51-124 (2009)
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Angell’s plot showing super-Arrhenius 
divergence of viscosity near 𝑇! for “fragile glass”

Debenedetti & Stillinger, Nature 410, 259 (2001)

molecular glass
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First published in 2011

In recent years, evidence has mounted that the 
dynamical slowing down of supercooled liquids, 
colloids and granular media might indeed be 
related to the existence of genuine phase 
transitions, but of very peculiar nature. 

Contrasting with usual phase transitions, the 
dynamics of these materials dramatically slows 
down with nearly no changes in their 
conventional structural properties. 

One of the most interesting consequences of 
these ideas is the existence of dynamical 
heterogeneities, which have been discovered to 
be, in the space-time domain, the analog of 
critical fluctuations in standard phase 
transitions. 

Review
 of intense theoretical efforts over tw

o decades
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Dynamic heterogeneity in 3D polydisperse soft spheres

L Wang, A Ninarello, P Guan, L Berthier, G Szamel, E 
Flenner, Low-frequency vibrational modes of stable 
glasses. Nat Commun 10, 26 (2019)

Soft spots in deep 
quenched glass

“Condensate”
N = 192,000

More recent work and reviews

Y Nishikawa, M Ozawa, A Ikeda, P Chaudhuri, L Berthier
Phys. Rev. X 12, 021001 (2022)

LF Cugliandolo, Annu. Rev. Condens. Matter Phys. 15: 
177–213 (2024)
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Biroli, G., & Bouchaud, J. P. (2023). The RFOT Theory of Glasses: 
Recent Progress and Open Issues. Comptes Rendus. Physique, 
24(S1), 1-15. 

Jean-Philippe Bouchaud (2024). Why is the Dynamics of Glasses 
Super-Arrhenius? arXiv:2402.01883

… extensive numerical simulations of the non-linear susceptibility of 
glasses, in particular in the aging regime, should shed important light 
on the mechanism at the origin of the super-Arrhenius behaviour of 
the relaxation time. 

In any case, more imagination is still needed to come up with 
experimental, theoretical or numerical ideas that would allow to 
finally settle the question of why glasses do not flow.

Are we close to 
solving the 

glass 
conundrum?
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A toy model
Sherrington – Kirkpatrick 

spin glass and 
the Nishimori line

𝐻 𝑆! , 𝐽!" = − '
#$!%"$&

𝐽!"𝑆!𝑆" , 𝑆! = ±1

𝐽"# = $
⁄𝐽 𝑁 , prob	𝑝

− ⁄𝐽 𝑁, prob	1 − 𝑝

Energy change associated with a single spin flip:

Δ𝐸 = ±24
#
𝐽"#𝑆# ≃ ±2𝐽

2𝑝 − 1
𝑁

𝑀 + 𝜂

“random field” 
of unit strength

Ferromagnetic 
coupling

𝑀 =4
#
𝑆#

Generic 
phase diagram
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The Nishimori line

Annealed model:

𝑍 𝐽"# = ∑ $!"%± ⁄( ) ∑ *! 𝑒
+ ∑!#" $!"*!*", 𝛽 = ⁄1 𝑇
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Equivalent annealed model

Nishimori line:

• Along the Nishimori line, quenched 
averages are identical to those of the 
annealed model.

• Hidden Mattis order in the annealed model 
for 𝑇 < 𝑇- = 1 (first suggested by Kasai 
and Okiji (1983)

𝑒 ⁄.+ ) =
𝑝

1 − 𝑝

Mattis model: 𝐽"# =
1
𝑁
𝜎"
/𝜎#

/ condensation onto
“planted state” 𝜎"/

no thermodynamic transition!

But which 
planted state?
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Random matrix formulation: 
gap opening and condensation 

at low temperatures

Laura Foini, Jorge Kurchan, “Annealed averages in 
spin and matrix models”, SciPost Phys 12, 080 (2022)

https://towardsdatascience.com/principal-component-
analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d 

N-dimensional 
hypersphere of spin states4

"%(

)

𝑆". = 𝑁

Principal component decomposition 
of configurational time series 
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https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d
https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d


Spectral representation

Spectral representation of the coupling matrix:

𝐻 = − '
#$!%"$&

𝐽!"𝑆!𝑆" = −𝑆
→
𝑱𝑆
→
( = − '

#$)$&

𝜆)𝑠)*

𝑠0 = 𝑆 ⋅ 𝑉0	
𝜆0 the set of eigenvalues

𝑉0	the corresponding eigenvectors

𝑍 = . 𝑑𝐽 𝑑𝑆 𝑃 𝑱 𝑒+,-𝛿 '
!.#

&
𝑆!* −𝑁

= 𝛽#+ ⁄& *. 𝑑𝜆 𝑑𝑧 𝑒+&0 1!,⋯,1";5

𝑧 = Lagrange multiplier “hidden” 
Mattis order 
defined by 
“instantan-

eous” 
principal 

eigenvector 
𝑉# 

𝜆 = 2
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𝜆

𝑇 = ⁄1 𝛽

𝑁	 ⟶ ∞: 𝑧 = 𝛽 +
1
𝛽

𝑇 > 𝑇- = 1,  unchanged from the infinite T

𝑇 < 𝑇- , 𝜆) = 𝑧  separates from the rest
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Exact finite-size scaling 
at spectral edge

𝑓 𝜆#, ⋯ , 𝜆&; 𝑧

=
1
4
'
).#

&

𝜆)* −
1
𝑁

'
#$)%6$&

ln 𝜆) − 𝜆6 	

+
1
2𝑁'

).#

&

ln 𝑧 − 𝜆) −
𝛽
2 𝑧

𝜆 = 0

𝑧

Extra “half” charge 
of opposite sign

Eigenvalues respond to temperature 𝑇 = 𝛽1(

Coulomb gas on a string
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Maximum Likelihood Spectrum

𝜕𝑓
𝜕𝜆0

=
1
2
𝜆0 −

1
𝑁

4
2,	250

1
𝜆0 − 𝜆2

−
1
2𝑁

1
𝑧 − 𝜆0

= 0

𝜕𝑓
𝜕𝑧

=
1
2𝑁

4
0%(

)
1

𝑧 − 𝜆0
−
𝛽
2
= 0

Wigner semi-
circle law

Zeroth order:

𝑄77 = 𝑢𝑄 +
𝑄7 − 𝑄∆
𝑢 − 𝑐

𝑄′
𝑄
= −𝜑

Ding Wang and LHT, arXiv:2405.14215

Scaling ansatz near 𝑥 = 2:

𝑔& 𝑥 = 1 − 𝜖#/9𝜑
𝑥 − 2
𝜖*/9

, 	 𝜖 =
1
𝑁

𝜑7(𝑢) = 𝜑* − 𝑢 +
𝜑 𝑢 − 𝜑 𝑐

𝑢 − 𝑐
ODE of the 
Riccati type

𝑢

𝜑 𝑐 = ∆	≡
1
2
𝑁(/7 𝛽1( − 𝛽

Stieljtes transform: 𝑔& 𝑥 =
1
𝑁'
).#

&
1

𝑥 − 𝜆)

𝑔&* 𝑥 − 𝑥𝑔& 𝑥 + 1 = −𝜖𝑔&7 𝑥 + 𝜖
𝑔& 𝑥 − 𝑔& 𝑧

𝑥 − 𝑧
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Nodal points of 𝑄 𝑢  = location of eigenvalues at the spectral edge

Airy function nodes
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𝑠)* =
𝑇

𝑧 − 𝜆)
	 , 	 '

).#

&

𝑠)* = 𝑁

Finite-size scaling of principal 
components of spin configurations
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comparison of simulation data with 
maximum likelihood estimations (MLE)

In the critical region, MLE yields

𝑠8. = 𝑇𝑁./7𝜓8 𝑁(/7 𝑇 − 1

𝑧 = 2 + Δ.𝑁1./7

𝜆8 = 2 + 𝑢)189(𝑁1./7
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	= 1 − 𝑇.
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Distribution of instantaneous spin amplitudes on the first three eigenvectors
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broadening due to 𝜆&  fluctuations
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Summary
• Condensate formation in the annealed SK model is described 

by gap opening of the coupling matrix 𝐽!" 	at the spectral edge.

• Finite-size scaling of principal spin components derived from an 
exact analysis of the edge spectrum of the random matrix.

• Equilibrium dynamics of the condensate evolution follows 
“Dyson Brownian motion” of the random matrix 𝐽!" 	: 

 i) drifting of the principal eigenvector, and 

 ii) sudden ”restructuring/hybridization”. 

Finite-size scaling of relevant timescales in the critical region in 
progress.

• 4-point correlation function of the toy model resembles that of 
a supercooled liquid near the glass transition 
⟹ slow evolution of interactions between neighboring grains

Ding Wang, SUSTech/HKBU


