Jamming Transition in Amorphous Solid Composites

<mark>Yiqiu Zhao (赵逸秋)</mark> , RGC Postdoc Fellow Qin Xu (许钦)'s Group, Department of Physics The Hong Kong University of Science and Technology

In collaboration with

Haitao Hu, Yulu Huang, Caishan Yan, Chang Xu, and Rui Zhang @ HKUST

Hanqing Liu @ Los Alamos, Yifan Wang @ NTU

NANYANG

JNIVERSIT

TECHNOLOGICAL

Video Source: Behringer Lab @ Duke

Field-Responsive and Adaptive Soft Robots

Magnetic Particles in Soft Polymer Matrix

Kim, et al. Science Robotics (2020)

The magnetic slime captures objects by endocytosis mode

Sun, et al. Adv. Funct. Mater. (2022)

Tissue-like bio-mimetic materials

van Oosten et al., Nature 573, 96-101 (2019) Song et al., J. Appl. Phys. 129, 140901 (2021) Song et al., arXiv:2307.11687

Adaptive \rightarrow large deformation (soft) Responsive \rightarrow more embedded particles (dense)

Nonlinear Mechanical Responses

Modelling composites in the dense and soft limits is challenging.

Multi-phase nature of the matrix

None affine shear

transformations

Soft and dense limit: The role of jamming? **Key Question**

What governs the mechanics of soft composites in the dense limit?

Does granular jamming matter at all?

Model soft composite : *athermal* stiff PS micro-spheres in soft PDMS matrix

Experiment: measuring shear modulus (G) under axial pre-strain (ϵ)

[1] Axial compressive strain ε applied step-by-step and quasi-statically (which may change particle network)
[2] After each compression step, measuring the small-amplitude shear modulus G (hopefully do not change network)

[= storage modulus G' under $\omega = 0.1$ rad/s and $\delta \gamma = 0.01\%$]

Experiment: measuring shear modulus (G) under axial pre-strain (ϵ)

The axial strain ε induces a **pure shear** deformation that **preserves the volume of the sample** (and thus **preserves the volume fraction** ϕ **of the particles**).

This point will be important later when we consider shear jamming...

Experiment: measuring shear modulus (G) under axial pre-strain (ϵ)

Axial (Compressive) Strain

□ Strain stiffening is stronger for denser and softer samples.

What governs the mechanics of soft composites in the dense limit?

Composite Elasticity

$$G = G(\phi, G_m, \varepsilon)$$

Particle Volume Fraction Matrix Elasticity

Shear Deformation

The ϕ dependence of the limiting states deviates from classical composite model predictions

Classical composite models do not capture the stiffening regime.

The ϕ dependence of the limiting states appear similar to the jamming-controlled rheology in suspensions

Does the jamming points also control the composite mechanics?

Signatures of jamming transition in the "precursor" suspension

Experiments: PS-in-oil suspension rheology (**NO elastic matrix** here, particles are dispersing in <u>a liquid</u>)

same polymer molecules as composite matrix, just not crosslinked

Signatures of jamming transition in the "precursor" suspension

Experiments: PS-in-oil suspension rheology (NO elastic matrix here, particles are dispersing in <u>a liquid)</u>

How does this ϕ_I may affect composites?

- □ the maximally-stiffened states
- Let they are sheared states and presumably share similar packing structures
- \Box thus may be controlled by the same ϕ_I .

Liquid-air interface tension Confining pressure up to $\sim \frac{\Gamma}{D} \sim 1$ kPa

How does ϕ_I affect composite elasticity?

This work: Composites (MSS) with non-zero matrix modulus G_m

Motivation: Elastic network with non-zero bending rigidity κ

Scaling collapse for the maximally stiffened states of composites

Rescaled matrix modulus

Jamming point controls composite elasticity in a way that resembles critical phenomenon.

$$\beta = \gamma/(\delta - 1) = 3$$
 $\Delta = \delta\beta = 5$

Scaling collapse for the maximally stiffened states of composites

$$G_{max} = |1 - \phi/\phi_J|^\beta f_{\pm} \left(\frac{G_m}{|1 - \phi/\phi_J|^\Delta}\right)$$

$$\beta = \gamma/(\delta - 1) = 3$$
 $\Delta = \delta \beta = 5$

The qualitative picture: how do composites "feel" the jamming point

The qualitative picture: how do composites "feel" the jamming point

For a quantitative model: a form of the scaling functions

An empirical fit would give a useful quantitative model. ... and we can choose one that is consistent with a scaleinvariant phenomenological free energy.

[1] Hypothesis: The system sits at the minimum of a Landau-type phenomenological free energy

$$L(\Phi, G_{\rm m}) = F(\Phi, G_{max}) - G_{max}G_{\rm m}$$
$$\Phi \equiv 1 - \phi/\phi_J \qquad l^{-d}F(l^{y_{\Phi}}\Phi, l^{y_{G}}G_{max})$$

[2] $\partial L / \partial G_{max} = 0 \Rightarrow$ inverse function of $f_{\pm}(x)$:

$$g_{\pm}(x) = c_1 x^{\Delta/\beta} \mp c_2 x^{(\Delta-1)/\beta} \pm x$$

-> a useful quantitative model.

$$G_{max} = |1 - \phi/\phi_J|^\beta f_{\pm}(\frac{G_m}{|1 - \phi/\phi_J|^{\Delta}})$$

What controls the states in the stiffening regime (under different applied strain)?

Collapsing G(ϵ) using strain-dependent jamming point $\phi_{\rm J} = \phi_{\rm J}(\epsilon)$

Gp: particle material shear modulus

All strained states in the stiffening regime

How to understand the $\phi_I(\varepsilon)$ relation that collapse composite data

Bi et al., Nature 480, 355-358 (2011)

Source: Behringer Lab @ Duke

- □ In the suspension literature, shear jamming is usually studied in shear-thickening systems, and is stress-controlled.
- □ PS-in-oil suspension does not shear thicken, and we did not observe stress-controlled shear jamming.
- □ Can they shear jam under quasi-static strain like dry granular materials? -> How to prepare the initial state?

Source: Jaeger Lab @ Chicago

Peters, Majumdar, Jaeger, Nature 532, 214-217 (2016)

Y. Zhao, Y. Zhao, D. Wang, H. Zheng, B. Chakraborty, J. E. S. Socolar, Phys. Rev. X 12, 031021(2022)

Motivation: Small-amplitude oscillatory can "melt" a jammed solid with $\phi > \phi_{m/SJ}$

Y. Zhao, Y. Zhao, D. Wang, H. Zheng, B. Chakraborty, J. E. S. Socolar, Phys. Rev. X 12, 031021(2022)

How to understand the $\phi_I(\varepsilon)$ relation that collapse composite data

0.2

PDMS base polymer)

0.4

0.6

Kumar and Luding, Granular Matter 18, 58 (2016) Han et al., Phys. Rev. Fluids 3 (7), 073301 (2018) Zhao et al., Phys. Rev. Lett. 123, 158001 (2019)

What governs the mechanics of soft composites in the dense limit?

Composite Elasticity

$$G = G(\phi, G_m, \varepsilon)$$

Particle Volume Fraction Matrix Elasticity

Shear Deformation

Quantitative model for composite strain-stiffening in the dense and soft limits

$$\boldsymbol{G} = \boldsymbol{G}(\boldsymbol{\varepsilon}, \boldsymbol{\phi}, \boldsymbol{G}_{\mathrm{m}})$$

[1] The scaling ansatz

$$G(\varepsilon,\phi,G_{\rm m}) = |1-\phi/\phi_{\rm J}(\varepsilon)|^{\beta} f_{\pm}(\frac{G_{\rm m}}{|1-\phi/\phi_{\rm J}(\varepsilon)|^{\Delta}})$$

[2] An explicit form of the (inversed) scaling functions

$$g_{\pm}(x) = c_1 x^{\Delta/\beta} \mp c_2 x^{(\Delta-1)/\beta} \pm x$$

*

[2] Strain-dependence: Granular shear jamming boundary

$$\phi_{\mathrm{J}}(arepsilon)=\phi_{\mathrm{m}}+(\phi_{0}-\phi_{\mathrm{m}})e^{-arepsilon/arepsilon}$$

Nat. Commun. 15, 1691 (2024)

Strain-stiffening in the dense limit as cross-over phenomenon

Gm = 0 Shear Jamming Transition

Source: Behringer Lab @ Duke

Gm = 0 Fluids

Suspensions

Flowing

 $G_{\rm m}/G_{\rm p}$ Composites $\varepsilon = 0$ B $=\varepsilon$ 82 Critical Dominant Dominant Particle shear E Strain Unjammed Jammed $\phi_J(\varepsilon)$ $\phi_{\rm m}$ Suspensions

Matrix elasticity

Nat. Commun. 15, 1691 (2024)

Gm > 0 Solid Composites

Ф

 ϕ_0

Volume Fraction Gm = 0 Solids (Jammed Suspensions)

Conclusion: Jamming in (Dense and Soft) Amorphous Solid Composites

- ✓ Granular shear jamming affects composite mechanics in a way resembling critical phenomenon
- New design ideas for functional soft materials \checkmark

Yulu Huang @ HKUST

Rui Zhang @ HKUST

Yifan Wang @ NTU

Chang Xu @ HKUST

Hanging Liu @ Los Alamos

Nat. Commun. 15, 1691 (2024)

Complex Fluids and Soft Matter @ HKUST Dept. of Physics, Hong Kong University of Science and Technology --- 香港科技大學物理系