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◼ Discrete system consisting of a large number of particles of macroscopic size (>1 μm).

◼ These materials are closely related to many important industrial applications, and are 

also the carriers for many geological processes like earthquake, avalanches and etc.

Granular Materials
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The phase behaviors of granular materials

Granular gas Granular liquid Granular solid

Gas Liquid Solid

◼ Granular materials are by nature out-of-equilibrium systems due to the macroscopic
size of the particles and irrelevancy of thermal motion.

◼ However, under external driving forces, they can still display gas, liquid, and and
solid phases similar to those of molecular and atomic systems.



◼ Unlike ordinary Newtonian fluids or elastic solids, granular materials display
complex rheological properties like shear dilatancy, shear thickening, and arching
effect, etc.

Complex properties

Shear dilatancy Volume fraction increases under shear

Arch effect Mechanical stable structures form at the outlet

Shear thickening
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Empirical Constitutive Theories

◼ Historically, empirical constitutive theories are normally employed to understand the behaviors of 
granular materials.

◼ However, these theories lack microscopic mechanisms, and encountered many difficulties .
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◼ To develop a continuum theory for granular materials, we need to establish the connections
between the micro and the macro within a statistical framework for out-of-equilibrium granular
systems.
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43. Can we develop a general theory of the dynamics of turbulent 

flows and the motion of granular materials?
Science
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Statistical mechanics for granular materials?
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• Granular materials are by nature out-of-equilibrium, as thermal motions of 
the particles are negligible. Without external perturbation, granular 
materials will remain in stable packing state. 

• Edwards and coworkers introduced a statistical mechanical framework—
Edwards ensemble for granular packings.

Edwards ensemble

Edwards and Oakeshott, Physica A, 1989.



Reproduceable macroscopic observables 

Knight et al., PRE, 1995.

Nowak et al., PRE, 1998.

Granular packings under consecutive tapping can evolve into history-
independent stationary states with fairly constant volume fractions, and it
fluctuates around its mean value. This resemble the behavior of the energy
of a thermal system at constant temperature.
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Edwards statistical ensemble for granular materials

“We assume that when N grains occupy a volume V they do so in such a way
that all configurations are equally weighted. It is the analog of the ergodic
hypothesis of conventional thermal physics.”

S. F. Edwards

Bi et al., Annu. Rev. Condens. Matter Phys., 2015.             Martiniani et al. Nat. Phys., 2017. 9

The number of
mechanical stable
states of granular
packing



Granular packings as a class of disordered materials
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metallic glass  Å colloid nm

granular mmfoam mm

Crystalline

crystal structure

➢Crystal ➢Disordered materials

Berthier and Biroli, RMP, 2011

granular materials are one class of disordered 
systems.
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Landscape of disordered materials
➢ In order to describe the disordered configuration of the amorphous solids, the

concept of the energy landscape is introduced, where each local energy
minimum represents a microstate of the system.

Charbonneau et al. Nat. Commun., 2014.
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Landscape of granular materials

Granular packing

Hard-sphere
liquidsHigh-T

T→0

➢ For granular materials, due to the presence of friction, the landscapes become very
rugged because many highly distorted configurations can be stablized, and each of the
local minima corresponds to a microstate of the Edwards ensemble.

Rapid 
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➢ Thermal system ➢ Granular system
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Pathria and Beale, Statistical Mechanics (Third Edition)

Two system 
separated by a 
“soft wall”, so that 
the volume
become variable



➢ Thermal system
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The Canonical Ensemble
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Density of states (DOS)

The DOS of jammed 
microstates
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Pathria and Beale, Statistical Mechanics (Third Edition)
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➢ Granular system



➢ How friction influences granular statistical mechanics, including both 
the density of states and the compactivity.       
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Motivation
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➢ Validity of the equal probability hypothesis of the Edwards ensemble.



Tapping experiment

➢ Packing

Particles (6mm)

• ABS plastic beads 

• 3D-printed (3DP)

• bumpy surface (BUMP)

Friction Coefficient

(Measured by repose angle)

𝜇𝐵𝑈𝑀𝑃> 𝜇3𝐷𝑃 > 𝜇𝐴𝐵𝑆 Tap intensity     
Γ = 2g ~ 16g0.81 0.67 0.61

➢ Particles

Structure
reconstruction

X-ray
imagingT

a
p



• Samples fully cover all mechanically stable packings between 
random loose packing (RLP) and random close packing (RCP)

• Γ vs. ϕ is not universal for different beads 

𝝓𝑹𝑳𝑷 ≈ 𝟎. 𝟓𝟔 𝝓𝑹𝑪𝑷 ≈ 𝟎. 𝟔𝟒

Luding, Nat. Phys., 2016.Yuan et al, PRL 127, 018002 (2021)

Range of Packing Fraction



Volume distribution
➢ Voronoi cell
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Boltzmann-like distribution of 
volume
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Boltzmann distribution of volume
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Overlapping histogram method
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Volume-independent Partition function
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Partition function is independent 
of the volume

DOS for packings of three kinds of 
beads collapse on three curves
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Free energy
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We postulate that                      for all three 

systems, from which              can be determined.
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Density of States
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Scaling of DOS for different friction systems 

( ) ( )/RLP RCP RLP= − −    

( ) ( )/RCP RLP RCPS S S S S= − −
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Increasing S range

mainly due to length scale separation between structure and force

ln( )
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Scaling of state equations of different friction systems

( ) ( )/RLP RCP RLPz z z z z= − −( ) ( )/RLP RCP RLP= − −    

2.5z =

Contact number 
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(One-to-one relationship between volume and      )

2 3
( ) g

z
V z V

z

+
=

ϕ-z relation for isostatic packings

(Different from previous study where z 
only depends on     )

Song, Wang and Makse, Nature, 2008



Granular and frictionless hard sphere system
Frictionless hard sphere packing Frictional granular packing

 corresponds  or d cRCP T T
RCP

Configurational 
entropy

Energy landscape Edwards 
entropy

Energy landscape

Barrat et al, PRL, 2000.

Parisi et al, RMP, 2010.

Charbonneau et al, Nat. Commun., 2014. 25

onT T

Glass onset temperature

 or    c dT T T

Glass/dynamical
transition temperature

onT

 or d cT T RCP
RLP

RLP
 corresponds onRLP T
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Equation of state

➢The Carnahan-Starling equation of state for the fluid phase of the hard 
sphere model.
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Density of State of different friction systems 
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Zm = 4.2

Zm = 5.5

Zm = 5

47.5 10zh −= 

hz: typical distance between jammed
configurations in the space, hz << 1

1
( ) ( ) exp( )

( )

z

zD z

z

z h A z
h −

 =  =

ln( )S = 
2.5( ) 1S  = −
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is controlled by friction
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Origin of critical state

Critical state
Granular materials, if continuously sheared, flow as a frictional fluid, would
eventually reach a well-defined critical state. At the critical state, the shear stress
and the volume fraction reach steady state values.

29

Force  F

Critical state

Volume fraction



Critical state and RLP

Critical state of sheared system RLP of same system prepared by tapping

The same 
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Volume fraction of the critical state of the sheared system are exactly the same as the 
volume fraction of the random loose packing of the same system prepared under tapping.



Thermodynamic understanding of critical state

→  
RLP & Critical state：

All mechanically stable states are
sampled with equal probability
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Identical volume distributions

Critical state  = RLP

equivalence of thermodynamic states
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Origin of shear dilatancy of granular materials
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Fluctuation-Dissipation temperature

2[ ( ) (0)] 2x t x Dt− =

( ) (0)x t x BFt− =

FDTT
B

D
=

Diffusion

Directed motion

➢Fluctuation-Dissipation ➢ Edwards Ensemble


Relationship：？
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Experimental setup

➢ We 3D print solid 
background particles 
and hollow tracers. 

Cyclic shear 
as a “heat bath”

➢ One CT scan after every
10 shear cycles

~F mg
“Buoyancy”

Hollow  
tracer

Background 
particle

➢ Obtaining tracers’ 
trajectories and 
packing structures 
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For different tracers, we always obtain the same fluctuation-dissipation 
temperature, which suggest that it is an intrinsic property of the entire granular 
system, instead of the tracer used. 



/ 0.91 0.12FDT p = 

FD Temperature        TFDT

Edwards Compactivity

Comparison between TFDT and 
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In all cases, Edwards temperature equals the fluctuation-dissipation 
temperature, within an error of  10%.



Segregation process of different densities particles

Hollow 
particle

Solid 
particle

~90,000
Cyclic shear

◼ A 50:50 mixture of hollow particles (HP) and solid particles (SP) ( ) of

the same diameter (D=7mm) and polydisperse (8%).

0.5solm m =

37

Initial mixed state Steady segregated state



Dynamics of density segregation

Initial state

Steady state

Degree of segregation：

( )sh2
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H H
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Relaxation time



Height distribution of particles

( )h hN n H dH= 
Particle 
number

Particle 
energy

Entropy

( )s sN n H dH= 

( ) ( )h h s sE m gHn H dH m gHn H dH= + 

2 ( ) ln ( ) 2 ( ) ln ( )s s h hS n H n H dH n H n H dH= − − 

            ( )     0segE SF T  = − 

Minimizing the free energy

seg

n

n
=

 
 
 
 

( ) Δ
exp -

( ) 2

h

s

H m

Τ

gH

H

➢Thermodynamics

( ) ( )s hH Hn n = −Constraint condition
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1

segT( )SPn H

( )HPn H

Height region that 
satisfies the Boltzmann 

distribution

Height distribution of particles

Slope=
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: The number distributions of

hollow and solid beads along different heights.

( )  ( )SP HPn H n H、

➢Confined system covered with lid: uniform pressure p inside
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Height distribution of particles
➢Free surface system: hydrostatic pressure ( )maxp H H −
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linear regime
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segT
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Comparison of the two temperature

From the volume 
fluctuation

From the height 
distribution

segT p
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➢As in free surface systems, different heights of the system equilibrate at 
identical                  or       .

43

➢ Free energy in granular 
thermodynamic framework

➢ Free energy in the traditional 
thermodynamic framework

F E p V S= + −F E pV TS= + −

Thermodynamic free energy for granular materials 

  ( )  0seg SF E T  = −    ( )  0seg

E
F S

p
   = − 

segT p 

➢ Edwards thermodynamics with real energy term works, It is reasonable to 
anticipate that additional terms, e.g., elastic energy and chemical potential, 
can be included in this general granular thermodynamic framework.



Short  Summary

➢For 3D granular packings under mechanical tapping, we experimentally test the

validity of Edwards volume ensemble.

➢We give the thermodynamics understanding of critical state and shear dilatancy for

sheared granular materials and indicate the unification of frictional granular and

frictionless hard-sphere systems.

➢Finally, for a 3D granular system under cyclic shear, we experimentally calculated the

effective temperature via fluctuation-dissipation theorem, which agrees with

compactivity based on Edwards volume ensemble. The density segregation process of

granular mixtures can also be understood within the Edwards thermodynamic

framework.
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Boltzmann regime

Free surface systems Confined systems

( )S expF
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Structural 
relaxation time

➢ Boltzmann regime: segregation timescale

( )S expF
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   Structural relaxation time
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