Long-term Workshop on Frontiers in Non-equilibrium Physics 2024 Yukawa Institute for Theoretical Physics, Kyoto University, Japan

August 1st (Thu.), 2024 $10:20 - 11:10$ (35+15mins)

Effective medium theory for viscoelasticity of soft jammed solids

Hideyuki Mizuno The University of Tokyo

Mizuno and Ikeda, arXiv:2407.15323

Soft jammed solids: foams, emulsions, soft colloids

 \checkmark There are various amorphous solids at various scales in our world

Nicolas et al., Rev. Mod. Phys. (2018)

2/28

Experimental measurements (1/2)

Macrorheology experiment

Aqueous foams subjected to an oscillatory shear

 \rightarrow Measure complex modulus

- Storage modulus (real part) $G'\propto \omega^0$
- \checkmark Loss modulus (imaginary part) $G'' \propto \sqrt{\omega}$

Anomalous viscous loss has been observed in many experiments

Krishan, et al., PRE 2010

3/28

Experimental measurements (2/2)

Microrheology experiment

Measure microscopic displacements of a probe particle $\alpha(\omega)$

 \rightarrow Transform to complex modulus using generalized Stokes relation $\frac{1}{6\pi a\alpha(\omega)}$ $G(\omega)$

Lower frequencies

$$
G'\propto \omega^0 \quad G''\propto \sqrt{\omega}
$$

4/28

Anomalous viscous loss

higher frequencies $G' \approx G'' \propto \sqrt{\omega}$

Nishizawa, et al., Sci. Adv. 2017

Theoretical understanding (1/4)

 \checkmark Contact force (harmonic potential):

$$
\phi(r)=\frac{k}{2}\left(\sigma-r\right)^2H(\sigma-r)
$$

- \checkmark Contact damping:
	- $\vec{f}^{\text{visc}}=b\Delta\vec{v}$ Strong damping due to viscous forces

Durian, PRL 1995

Vibrational density of states (vDOS):

$$
D(\omega) \propto \begin{cases} \left(\frac{\omega}{\omega_*}\right)^2 & (\omega < \omega_*) \,, \\ 1 & (\omega_* < \omega). \end{cases}
$$

Silbert et al., PRL 2005; Charbonneau et al., PRL 2016

Theoretical understanding (2/4)

6/28

Theoretical understanding (3/4)

Microrheology

 $\frac{1}{G^*(\omega)} = \int d\omega' \frac{D(\omega')}{(\omega')^2 + i\omega}$ romance complex the

Hara, et al., Soft Matter 2023

7/28

Formulate complex modulus based on vDOS

$$
\sqrt{\frac{1}{2}} \text{Scaling laws}
$$
\n
$$
G_{m(\alpha)}^{*}(\omega) \approx
$$
\n
$$
\sqrt{\omega} + i\sqrt{\omega} \qquad (\omega_{*}^{2} \ll \omega \ll 1)
$$
\n
$$
\omega_{*} + i\frac{\omega}{\omega_{*}} \qquad (\omega_{*}^{3} \ll \omega \ll \omega_{*}^{2})
$$
\n
$$
\omega_{*} + i\sqrt{\omega_{*}\omega} \qquad (\omega \ll \omega_{*}^{3})
$$

higher frequencies $G'\approx G''\propto\sqrt{\omega}$

Theoretical understanding (4/4)

Microrheology

Hara, et al., arXiv 2024

8/28

Anomalous viscous loss is linked to non-Debye scaling law (boson peak)

Microscopic theory for soft jammed solids

9/28

Effective medium theory (EMT)

[or coherent potential approximation (CPA) theory]

- \checkmark Electronic energy levels in disordered metallic alloys Yonezawa and Morigaki, Progress of Theoretical Physics Supplement 1973
- \checkmark Conductance in electrical resistor networks Kirkpatrick, Rev. Mod. Phys. 1973
- \checkmark Rigidity percolation problem in spring networks Feng et al., PRB 1985; He and Thorpe, PRL 1985
- \checkmark Heterogeneous elasticity theory for glasses Schirmacher et al., EPL 2006, PRL 2006

Effective medium theory: 10/28 Heterogeneous elasticity theory for glasses

Theory explains characteristic properties of glasses

: nonaffine deformation, boson peak, scattering of sound waves,

low thermal conductivity

Schirmacher et al., EPL 2006, PRL 2006

Effective medium theory: 11/28 Jammed amorphous solids (1/4)

$$
\checkmark \quad \text{Context force (harmonic potential):} \quad \phi(r) = \frac{k}{2} \left(\sigma - r \right)^2 H(\sigma - r)
$$

Durian, PRL 1995

Jamming transition occurs at $\phi = \phi_{.I}$

- At the transition, the system becomes isostatic with contact number $z_c=2d$
- \checkmark Above the jamming, excess contact number controls the rigidity $G \propto z - z_c = \delta z$

Effective medium theory: 12/28 Jammed amorphous solids (2/4)

Contact force (harmonic potential): $\phi(r) = \frac{k}{2} (\sigma - r)^2 H (\sigma - r)$

Silbert et al., PRL 2005 Charbonneau et al., PRL 2016

Effective medium theory: 13/28 Jammed amorphous solids (3/4)

\checkmark Random spring network Feng et al., PRB 1985

 $V=\sum \frac{k_{ij}}{2}\left[(\vec{u_i}-\vec{u_j})\cdot\vec{n}_{ij}\right]^2$ $Nz/2$ pairs of particles are connected $P(k_{ij}) = \frac{z}{z_0} \delta(k_{ij} - 1) + \left(1 - \frac{z}{z_0}\right) \delta(k_{ij})$ $\frac{z}{z_0}$ $1.0[°]$ fcc

Effective medium theory: 14/28 Jammed amorphous solids (4/4)

 \checkmark Random spring network

Wyart, EPL 2010; DeGiuli et al., Soft Matter 2014

$$
V = \sum_{\langle ij \rangle} \left\{ \frac{k_{ij}}{2} \left[(\vec{u}_i - \vec{u}_j) \cdot \vec{n}_{ij} \right]^2 - \frac{f_{ij}}{2 \sigma_0} \left[(\vec{u}_i - \vec{u}_j) \cdot \vec{n}_{ij}^\perp \right]^2 \right\}
$$

Energy reduction due to repulsive forces

 $D(\omega) \propto 1$

Present work

Aim

- \checkmark Develop EMT for viscoelasticity
- \checkmark Macrorheology and microrheology
- \checkmark Random spring network model
- Integrate contact damping effect

15/28

Results

- \checkmark Explain experimental results
	- higher frequencies $G'\approx G''\propto\sqrt{\omega}$
	- Lower frequencies $G'\propto \omega^0$ $G''\propto \sqrt{\omega}$ Anomalous viscous loss

Random spring network model (1/3)

Feng et al., PRB 1985; Wyart, EPL 2010; DeGiuli et al., Soft Matter 2014

16/28

- \checkmark Point particles placed at lattice sites with contact number z_0
- \checkmark Connect nearest neighbors' particles by springs
- \checkmark Repulsive forces between connected pairs of particles $e_{ij} = \frac{Jij}{k_{ij} \sigma_0} \equiv e \ (> 0)$: Prestress

 \checkmark Randomly cut springs -> control contact number z $(< z₀)$

$$
V = \sum_{\langle ij \rangle} \left\{ \frac{k_{ij}}{2} \left[(\vec{u}_i - \vec{u}_j) \cdot \vec{n}_{ij} \right]^2 - \frac{f_{ij}}{2\sigma_0} \left[(\vec{u}_i - \vec{u}_j) \cdot \vec{n}_{ij}^{\perp} \right]^2 \right\}
$$

$$
P(k_{ij}) = \frac{z}{z_0} \delta(k_{ij} - 1) + \left(1 - \frac{z}{z_0} \right) \delta(k_{ij})
$$

 \checkmark Contact damping occurs between connected pairs of particles $\vec{f}_i^{\rm damp} = -\mu(\vec{v}_i - \vec{v}_j) \qquad \mu$: Viscosity

Random spring network model (2/3)

$$
C\frac{d}{dt}|u\rangle = -M|u\rangle + |F\rangle
$$

\n
$$
|u\rangle = [\vec{u}_1, \cdots, \vec{u}_N] : \text{Displacement}
$$

\n
$$
|F\rangle = [\vec{F}_1, \cdots, \vec{F}_N] : \text{External force}
$$

\n
$$
M = \frac{\partial^2 V}{\partial \vec{r} \partial \vec{r}} = \sum_{\langle ij \rangle} |ij\rangle k_{ij} [\vec{n}_{ij} \otimes \vec{n}_{ij} - e(I_d - \vec{n}_{ij} \otimes \vec{n}_{ij})] \langle ij|
$$

\n: Hessian matrix
\n(contact force)
\n
$$
C = \sum_{\langle ij \rangle} |ij\rangle \mu k_{ij} [\vec{n}_{ij} \otimes \vec{n}_{ij} + (I_d - \vec{n}_{ij} \otimes \vec{n}_{ij})] \langle ij|
$$

: Damping r (contact da

17/28

matrix	$\langle ij \rangle$
ce)	\n $\left ij \right\rangle \mu k_{ij} \left[\vec{n}_{ij} \otimes \vec{n}_{ij} + \left(I_d - \vec{n}_{ij} \otimes \vec{n}_{ij} \right) \right] \langle ij \rangle$ \n
matrix	\n $\left \begin{array}{c}\n \text{matrix} \\ \text{implies}\n \end{array}\right $ \n

Random spring network model (3/3)

18/28

$$
G(\omega\mu)=\left(M-i\omega C\right)^{-1}=\widetilde{M}^{-1}:\textsf{Green function}
$$

 $\tilde{M} = M - i\omega C$: Complex hessian matrix

$$
=\sum_{\langle ij \rangle} |ij\rangle \widetilde{k}_{ij} \left[\vec{n}_{ij} \otimes \vec{n}_{ij} - \widetilde{e}\left(I_d - \vec{n}_{ij} \otimes \vec{n}_{ij}\right)\right] \langle ij|
$$
\n
$$
P\left(\widetilde{k}_{ij}\right) = \frac{z}{z_0} \delta\left(\widetilde{k}_{ij} - \widetilde{k}\right) + \left(1 - \frac{z}{z_0}\right) \delta\left(\widetilde{k}_{ij}\right)
$$

 $\widetilde{k}=1-i\omega\mu$: Complex stiffness $\widetilde{e} = \frac{e + i\omega\mu}{1 - i\omega\mu}$: Complex prestress

 \checkmark Effects of contact damping are integrated into complex stiffness and prestress -> We can apply the effective medium theory

Effective medium theory (1/2)

 ν Introduce effective green function

DeGiuli et al., Soft Matter 2014

19/28

$$
G_{\text{eff}}(\omega\mu) = M_{\text{eff}}^{-1}
$$
\n
$$
M_{\text{eff}} = \sum_{\langle ij \rangle} |ij\rangle \left[k^{\parallel} \vec{n}_{ij} \otimes \vec{n}_{ij} - \tilde{e}k^{\perp} (I_d - \vec{n}_{ij} \otimes \vec{n}_{ij}) \right]
$$
\n
$$
\text{W}_{\text{eff}} = k^{\parallel} - (d - 1)\tilde{e}k^{\perp} : \text{Effective stiffness}
$$

$$
\begin{aligned} G^\parallel &= \vec{n}_{ij} \langle ij| G_\text{eff} |ij \rangle \vec{n}_{ij} :\text{Longitudinal component} \\ G^\perp &= \frac{1}{d-1} \left[\text{Tr} \langle ij| G_\text{eff} |ij \rangle - G^\parallel \right] :\text{Transverse component} \end{aligned}
$$

 \checkmark Effective medium theory maps Green function G to effective G_{eff}

Effective medium theory (2/2)

$$
\begin{aligned}\n\checkmark \text{ Green function } G &= G_{\text{eff}} + G_{\text{eff}} \underline{T} G_{\text{eff}} \\
\bigcup \quad & \langle \rangle = \int d\widetilde{k}_{ij} P(\widetilde{k}_{ij})\n\end{aligned}
$$
\nTransfer matrix

DeGiuli et al., Soft Matter 2014

20/28

 \checkmark EMT equation $\langle G \rangle = G_{\text{eff}} \langle \Longrightarrow \langle T \rangle = 0$

$$
\left\langle \sum_{k} \left| \int_{\mathcal{C}} \mathbf{g}_{k} \right| = \frac{k^{\parallel} - \widetilde{k}(z/z_{0})}{k^{\parallel} \left(k^{\parallel} - \widetilde{k} \right)} \qquad G^{\perp} = -\left[\frac{k^{\perp} - \widetilde{k}(z/z_{0})}{\widetilde{e}k^{\perp} \left(k^{\perp} - \widetilde{k} \right)} \right]
$$

 \mathcal{F} Assume isotropy of green function $G^{\parallel} = G^{\perp}$

$$
G_{\text{eff}}(\omega\mu) = M_{\text{eff}}^{-1} \quad \Longleftrightarrow \quad G^{\parallel} = G^{\perp} = \frac{2d}{z_0} \left[\frac{1}{k^{\parallel} - (d-1)\tilde{e}k^{\perp}} \right]
$$

 \checkmark We obtain closed equations for $||k^{\parallel}, k^{\perp}, G^{||}, G^{\perp}$

Complex modulus

\checkmark Macrorheology experiment

Measures global modulus when applying an oscillatory strain

$$
G_M' - iG_M'' = k_{\text{eff}}
$$

$$
k_{\text{eff}} = k^{\parallel} - (d-1)\tilde{e}k^{\perp} : \text{Effective stiffness}
$$

Microrheology experiment

Measures microscopic displacements of a probe particle when applying an oscillatory external force to it

$$
g=\frac{1}{d}\text{Tr}\langle i|G_{\text{eff}}|i\rangle=\frac{2d}{z_0}\frac{1}{k_{\text{eff}}}\text{ : Response function}
$$

 \rightarrow Transform to complex modulus using generalized Stokes relation $G'_{m} - iG''_{m} = \frac{1}{3\pi\sigma_{pr}g} = \frac{1}{3\pi\sigma_{pr}} \frac{z_{0}}{2d} k_{\text{eff}}$

Macrorheology and microrheology output same complex moduli

Set up

\checkmark EMT Equations

$$
G^{\parallel} = \frac{k^{\parallel} - \tilde{k}(z/z_0)}{k^{\parallel} (k^{\parallel} - \tilde{k})}
$$

\n
$$
G^{\perp} = -\left[\frac{k^{\perp} - \tilde{k}(z/z_0)}{\tilde{e}k^{\perp} (k^{\perp} - \tilde{k})}\right]
$$

\n
$$
G^{\parallel} = G^{\perp} = \frac{2d}{z_0} \left[\frac{1}{k^{\parallel} - (d-1)\tilde{e}k^{\perp}}
$$

\n
$$
\tilde{k} = 1 - i\omega\mu
$$

\n
$$
\tilde{e} = \frac{e + i\omega\mu}{1 - i\omega\mu}
$$

\n
$$
k_{\text{eff}} = k^{\parallel} - (d-1)\tilde{e}k^{\perp}
$$

 $G'_M - iG''_M = k_{\text{eff}}$

- \checkmark Three dimensional space $d=3$
- \checkmark FCC lattice sites $z_0 = 12$
- \checkmark Control parameters $\delta z = z - z_c \geq 0$ $0 \le e \le e_c \; (\propto \delta z^2)$ e^{\prime} unstable e_c stable Z. \mathcal{Z}_c

DeGiuli et al., Soft Matter 2014

Results (1/5): 23/28 Analytical solution

 \checkmark Analytical solution

$$
G'_M - iG''_M = \left(1 + \sqrt{\frac{e_c - e - i\omega\mu}{e_c}}\right) \frac{\delta z}{4da} + o\left(\delta z\right)
$$

$$
e_c = \left(\frac{1}{32d^2a} \frac{z_0}{2d}\right) \delta z^2 \sim \omega_*^2 \propto \delta z^2
$$

 \checkmark Static modulus (zero frequency)

$$
G'_{M0}=\left(1+\sqrt{\frac{e_c-e}{e_c}}\right)\frac{\delta z}{4da}\propto\delta z
$$

 \checkmark Static modulus becomes real number in a stable region at $e < e_c$

24/28 Results (2/5): Zero prestress case $|e=0|$

 $10³$

25/28 Results (3/5): Finite prestress $0 < e \le e_c$

 ω

 \checkmark EMT explains anomalous viscous loss

Results (4/5): 26/28 vDOS and complex modulus at $e = 0$

Results (5/5): 27/28 vDOS and complex modulus at $0 < e \le e_c$

Conclusions

Mizuno and Ikeda, arXiv:2407.15323

28/28

- Develop EMT for viscoelasticity of soft jammed solids
- Random spring network model
- Integrate contact damping effect
- Theory explains experimentally observed viscoelasticity
	- l Macrorheology and microrheology show the same complex moduli
	- higher frequencies $G' \approx G'' \propto \sqrt{\omega}$
		- \triangleright Linked to plateau in vDOS
		- \triangleright Controlled by contact number δz
		- Anomalous viscous loss Lower frequencies $G'\propto \omega^0$ $G''\propto \sqrt{\omega}$
			- \triangleright Linked to non-Debye law (boson peak) in vDOS
			- Controlled by prestress e

