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Introduction

* Understanding of rapid flow of
dry granular particles is important.

e Our interest: Simple shear flow
(e.g., bulk region of flow down inclined plane)

 Assumption:

particles are frictionless and hard sphere
(diameter o, mass m)

=> Stress satisfies Bagnold’ s law
Oxy ~ myz/ o

Sidawalls

* Kinetic theory (treating vel. dist. func.)
is known to describe the flow.
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Our approach: hydrodynamic description

Try to derive hydrodyn. egs. lOur approac>h ?
for granular gas flows

Approach: ° : @ | m
“From dilute to moderately dense” °° @0

* Dilute gases (¢ « 1): From dilute to dense

inelastic Boltzmann equation

* Moderately dense gases (@ < 0.5):
inelastic Enskog equation

» “Garz6 and Dufty, PRE (1999)” is well-known.
= Theory for homogeneous cooling state
Many people use this theory “without doubt.”

Boltzmann
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Validity of GD theory (Garzé and Dufty (1999))

e Validity of GD theory is examined by simulations.
(e.g. Mitarai & Nakanishi (2007), Chialvo & Sundaresan (2013))
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‘ Theory seems to works well for ¢ < 0.49 (Alder transition).

 However, this theory is NOT applicable for sheared flows.
= Why?
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Difference between them

Answer: Base state is different!

» Garz6 and Dufty’ s paper:
= Homogenous cooling state (no external force)
Base state is homogeneous and isotropic.

v'Viscosity: determined by the local fluctuation
of velocity gradient

e Our interest = sheared flow
Base state is homogeneous but anisotropic.

v'Viscosity: should be determined
by homogeneous sheared state

‘ GD theory is NOT applicable as it is.

Our motivation:
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To construct the theory by considering a proper base state.




Model and setup Ur)

* Particles:
®monodisperse (mass m, diameter o)

®Frictionless hard—core potential
®restitution coefficient e(< 1): constant o

* Sheared periodic boundary condition (with SLLOD and Lees—Edwards)
=> no physical walls = “idealistic” condition
But expected to be realized
in the bulk region of the flow of
inclined planes

 Event—driven simulations are also done
to validate our theoretical results.
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Kinetic theory of sheared granular flows

Starting equation (kinetic equation):

0 |
Voo fwv;0) 4J(v|f®)

shear collisions

Time evol. of one-body
vel. dist. func.

 Collision integral: effect of binary collisions

1
JIVIf@] = 6?f dv,[ d6O(vy; - 6)(vy3 - 6) L_zf(z) (r,r —o,vy, vy, t) = fOr,r + 0,01, vy, t)

f@(ry,1,,v4,v,,t): two-body distribution function

X Kinetic eq. is not closed for one-body dist. func.
f dvmV, Vg X (Kinetic eq. ) Kinetic part of the stress:
Pig =m[ dVV, Vs f(V,¢)

Time evol. of kinetic stress
0tPhg + V(8axPyp + OpxPre) = —Map

Collision moment:
Agp = —m[ dVV, V] (V|f®)

TAT F————— | {5



Kinetic theory of sheared granular flows

Only
XX, Yy, ZZ, Xy
components

are important.

Time evol. of kinetic stress

0cPap + 1 (SaxPyp + OpxPya) = ~Aap
Set of dynamic equations:
2 1 ”
0,T = —=yPK, — = Agq for T, AT, 6T, B,
3 3
2
0cAT = - L (Axx Ayy)

2 .
0,6T = — Eypxy — (20 + Ay,
0Py = —VBS — Ayy

- Azz)

Kinetic stress:
Pig =m[ dVV,Vgf(V,t)

Temperature T :
_ P&+ PS5+ P
B 3n
Anisotroplc temperatures:
AT_Pxx Pk ,(STEPngC_PZI;
n n

Collisional contribution of stress:

1+e
chﬁ 4 mgof d171f dvzf d60(6 - v1,)(6 - v13)?

G4 0p .[ dxf@ (r —xo,r + (1 — x)0, vy, vy; t)
0

Up to here, no approximation. BUT, not solvable!

Why? = not closed for the one-body distribution

# We need a closure.

TAT

Two-body distribution
is included in

Agp = —mf dVV, V] (V|f?).

‘0° Q



Two approximations as closure

1. Enskog’s approximation:
Two-body dist. = product of one-body dist. with radial dist. func.
fA L £ 0,v1,055t) = go(Irn — 12l = 0,0) f(r1, v, Of (1, 0,1, 1)
~ go(@)f Vi; )f (Vo F yyosyes; t)

Radial distribution at contact:

(Carnahan-Stirling formula and its denser extension)

(p < s = 0.49)

go(@) =3

( 1—¢/2
(1-¢)3
1— /2 @5 — @5

(1—9p)’ ¢o;— o

(pr < @ < @5 = 0.639)

1

One-body dist.:
Assumption of uniform velocity profile
(System is uniform)

frtov,t)=f(V, ¥ Yyosyey; t)

2. Grad’s approximation:

expression of one-body dist.

FV;0) = fu@;0) (1+1

2T

a,BVaVB)

Maxwell distribution:

fuVit) =n (1)3/2 exp (— mv2>

2nT 2T

Dimensionless kinetic stress:
pk
ap
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Dynam iG equatiOnS Dimensionless quantities:
T AT _OT . PY
b= ma2p2’ " T moezy?’ T ma2y?’ Y T nmaiy?

After these two assumptions,
Ayp(= Agp/nmao?y?) is closed for 6,A0,56,11%, .

Santos, Montanero, Dufty, & Brey, PRE (1998)
Lower-order terms were already known = Montanero, Garzé, Santos, & Brey, JFM (1999)
. . . Takada, Hayakawa, Santos, & Garzo, PRE (2020)
This study: Full-order solutions are derived.

. _6V2 3/2 NP (n) )
Aap =—— (1 +e)pgo z 0 2C,;(0,40,450,1ly) | 1//0: expansion parameter |
n=0
Set of closed dynamic equations: Dynamics are determined
2 1 = :
0.0 = — =I5, — = Nig T =yt » by solylng these coupled
3 3 equations.

aTAH — _ancy - (Ajcx — A;y)
ar69 = _ZH;y _ (ZA;x + A;’y _ A;Z) , l+e o f : . - L
Pgtr,) = ot [avi [ ave [ d5ovi-5)(via -5

Collisional contribution of stress:

~ 1, ) 1,
3 3 X 0q08f (V| + E'}'ar}yem) / (Vg — 5";‘0@,83,)

) 2 1
0.01%, = — (6 — =00 + =56

TAT F————— | {5



. 11
Convergence of the expansion

Some previous studies treated only few terms...
= Takada, Hayakawa, Santos, & Garzo PRE (2020)

(a) 10 5 (b) 1o
QueStion: 101'3:28 - ; 10° oo R %’Eﬁﬁﬁ'm
How does the truncationof Az | 1 0w /Og/g/ﬁ@é I g
affect the results? S I etete LR 10— o
6v2 < 1\" ’ NPT o I © 0% - - o
Aixﬁ = T(l +e)pgo63/? Z)Cc({;) (\/_5) 10,572 Ao 116'12 . 162)1/1200 10501 032 0'9{?3_04O 0.5
n= . .
For e < 1 (highly inelastic situation) @ = 0.30
or finite @ (moderately dense situation), B 11092 B —— N,
the parameter 1/\/5 becomes larger. g 104 | R
¢ 100} 410
- Convergence is very slow. : 2
= needs a lot of terms — 1072
107
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Steady dynamics

We now focus on the steady-state.

Set of dynamic eqgs.: List of scaled quantities:
 Temperature: 6
0=- 3 My, — §A’;m * Viscosity: n* = —(II;, + IIg;)
0= —2I%, — (A%, — A%)) * Macroscopic friction coefficient: u := —P,,, /P
fy x’i y 3; ) « Normal stress differences:

0= _any o (ZAxx + Ayy — Azz) N1 = (Pyx — Pyy)/P, Ny == (Pyy, — P;;)/P

2 1 * 1+e
0=-— (9 — §A0 + 560) — Ay, Piptrit) = fmo [ Vi [ava [ dseivia- o)V @)

. L. L. .
X 0q08f (Vl + qucrcryf%) f (V2 — 5'}00'3’,893) ,

We will plot these quantities
against the volume fraction ¢ and the restitution coefficient e.

TAT F————— | {5



Scaled kinetic temperature & viscosity N

Plots of 6 and n* against the volume fraction ¢ (for various e)

107 . 5 104 ¢
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Shows good agreement with the MD simulations up to 50%.
But seems also good with the theory by Garzé and Dufty (1999)?
No difference? Why?

This is a log-plot magic!

TAT



Kinetic temperature & viscosity ”

Ratio of the viscosity n from our theory to Garz6 and Dufty’s theory 7y
against the restitution coefficient e and the volume fraction ¢
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Garz6 and Dufty’s theory: deviations fore <K 1or ¢ « 1
= Our theory can capture the behavior.

However...

Our theory: discrepancy appearsfor ¢ > 0.4and e > 0.9
Why? This might be because e = 1 is singular.

TAT F—— | {5



(Macroscopic) friction coefficient "

(Macroscopic) friction coefficient u = P, /P

(a) (b)
1.0 20
theory simulation theory  Garzo & Dufty ~ simulation
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Better agreement for dilute regime

Poor agreement for dense regime (¢ > 0.5) ¢c = 0.5 might be the upper

limit of the kinetic theory.
TA T F——— . {55,



NOI"ma| Stl"ess differences Normal stress differences:
Nl EPxx;)Pyy’]\r2 EPyy;Pzz

 Because the system is anistropic,
the normal stress differences are also important.

 GD theory cannot explain these quantities.

(@) 10 (b) o3
0.8 070 — - O 0ol 070 — - O
o 0.80 0.80 o
06%\_ o 090 — — [ 090 — — O PP
Ny e 099 — O | N, 01f 099 — o _-©
N i@ b __D___D- 11— gsll
OZQDE hE O — B r‘\#"_.T Q Q O
. ~ <0 S A A Oo%qg’g |V S A O
~ - Do © 4 _
0 01 02 03 04 05 95 01 02 03 04 05

Qualitatively agree with each other.

However, the theory underestimates %V, for ¢ «< 1.

16
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Comparison with similar approach

» Saha & Alam JFM (2016) constructed the theory
in terms of the anisotropic Gaussian model.

Grad’s approximation:
n 1 24
(c,x, 1) = ex (——C M. C) ” m
d (83| M|)!/> P 2 fV;t) = fmV;t) (1 +2THaBVaVB)

* Behaviors of almost of the quantities are similar.

(b) 0.4 I I I I
0.70 —— 0.70 (sim)) &

03l 080 0.80 (sim.)
€ 0.90 0.90 (sim.)

P

0.1

01 02 03 04 05 06
2

Their theory captures the behavior of N, in the dilute regime.
= Their theory seems superior to our theory.

___ = Other corrections are needed in our theory? Py
1A —Q




Modification: Effect of non—Gaussianity "

Our present approach:

Expansion around the Maxwellian Maxwell distributig/r;: 2
- mV;t) =n (ﬂ) exp <— mV )
;0 = fu@;0) (14 e ngghyy) M0 o7

“Non-Gaussianity” is important even in homogeneous cooling state!
(Sonine polynomials are often used as polynomial expansion.)

0.20R

1(mV2)2 5mV? 15
_I_

FV0) = fy (V) {1 +a, } (1 + % naﬁvavﬁ)

0.15]- 2\ 2r )] 22T ' 8
S a, determines the magnitude of non-Gaussianity.
0.05}- (van Noije & Ernst (1998))
o0 oeceo| a, changes the results?
00 02 04 06 08 10

£

TAT F————— | {5
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a, correctic ,, lasticity)

10 0.80 (withay) — Q.15
0 e e iscosity & frict. coeff.
. . } 0-10 ° P
Sh ‘e Insensitive to a,.
0.05
ood agreements,

0.00 wee_so> Ut the correction is invisible.

1005 07 02 03 04 035 A R SR S N
@ 00 02 04 08 08 10

080 (with o) 0.80 (with o Still poor agreements
1.0 0.80 (a; —=0) — - - at 0.80 (4, =0) — - -
08 ¢ 0.80 (sim.) ® > ¢ 0.80 (sm.) & Why?

=08 s ‘
o) % ““W Non-Gaussianity a, ~ 0
o fore~0.8

0.0

00 01 02 03 04 05 06 080 01 02 03 04 05 06

p; p What happens for
strong inelastic case?

TAT 07y




a, correction : e =~ 0.1 (strong inelasticity) »

10° 1.0
0.10 (with ay) —— 0.10 (with ay,) ——
. 0.10 (4, =0) — - - 0.9} ¢ 0.10 (ay =0) — - -
1 0.10 (sim.) @ 0.10 (sim.

0.8}

Viscosity & frict. coeff.
are still insensitive to a,.

307

0.6
05!
04=—39 02 03 04 05 06
(‘D °
Normal stress diffs. are
2.0 , 10 , sensitive to a,.
0.10 (with ay) 0.10 (with ay) ——
15k~ . 0.10 (@, =0) — - - 0.8 . 0.10 (a=0) — - -
N, 0.10 (sim.) & 0.10 (sim.) @

Although the simulation data are
insufficient, the trend of N,
seems good, but that of N, seems

00 01 02 03 04 05 06 00 01 02 03 04 05 06

. - = | have no idea.
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Discussion: Existence of physical walls

Physical (bumpy) wall “kicks” particles inward.
= Walls violate homogeneity of the system.

. 2D case was solved by Saitoh & Hayakawa.
| : (')' '“_,'w'"ﬁ""d'&'”"_'_"_ """v 0000000009999%%  Particles gather in the center of the system.

Assumption used in the previous part

(homogeneity) becomes invalid.
0.4

e=0.70, p=0.10 —
e=0.80, =010 — —

<
Saitoh & Hayakawa,

S- 0.2
Phys. Rev. E 75, 021302 (2007) Y
0.1r
We should solve B
. pDv=-V.P,
the hydrodynamic eqs. 0.05 : " 5
more seriously! pDiT ==P:(Vo) -V -g -, Y

TA T E— |



Kinetic theoretical treatments to different systems2 2

e Similar approach for inertial suspensions
= Good agreements with simulations

Hard-core Soft-core
(b) 104 ‘ ‘ (b)
4 0.9 (theory, linear)
10 0.9 (theory, 6th)
0.9 (sim.)
2 | 1.0 (theory, linear) — — -
77*102 | 77* 10 1.0 (theory, 6th) —— ’I’]* 10*
1.0 (sim.)
10° 100[7
10° 10! 102 107 10° 10
s sk k
¥ 4 g
Discontinuous jump Discontinuous to Two-step
of viscosity for ¢ < 1 continuous as ¢ / discontinuous jump
Hayakawa, Takada, & Garzo,
Hayakawa & Takada, Phys. Rev. E 96, 042903 (2017) Sugimoto & Takada,

PTEP 2019, 083J01 (2019) Takada, Hayakawa, Santos, & Garzo, J. Phys. Soc. Jpn. 89, 084803 (2020)

— s m— Phys. Rev. E 102, 022907 (2020) OO0
[ AT E—————— 5
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Summary

 We have revisited the kinetic theory for sheared granular flows.
* We have constructed the theory using a proper base state.
* Full-order solution of the collision moment is derived.

* Results (a) 30
e Kinetic theory well describes sheared 25 450 — o
granular flows at least for ¢ < 0.5. W 2 §§§ <> c
* Friction coefficient u is well reproduced, Eal —oaoog ;;
but normal stress differences are not. 0'5:-2’@@- e A
* Questions (and future work) 002 od o os e

 Non—Gaussianity of the vel. dist. func. is important for e < 1?
* Physical wall violates homogeneity.

TAT F————— | {5
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