

Kinetic theory of moderately dense dry granular particles under a simple shear

 (**Tokyo Univ. Agri. & Tech.**) **In collaboration with** Shunsuke Iizuka¹ & Hisao Hayakawa² **1 Tokyo Univ. Agri. & Tech., 2 YITP, Kyoto Univ.**

Introduction

- Understanding of rapid flow of dry granular particles is important.
- Our interest: Simple shear flow (e.g., bulk region of flow down inclined plane)
- Assumption: particles are frictionless and hard sphere (diameter σ , mass $m)$
	- ⇒ Stress satisfies Bagnold's law $\sigma_{\chi\gamma} \sim m\dot{\gamma}^2/\sigma$
- Kinetic theory (treating vel. dist. func.) is known to describe the flow.

Our approach: hydrodynamic description

Try to derive hydrodyn. eqs. for granular gas flows

Approach:

- "From dilute to moderately dense"
- Dilute gases ($\varphi \ll 1$): inelastic Boltzmann equation
- Moderately dense gases ($\varphi \lesssim 0.5$): inelastic Enskog equation
- "Garzó and Dufty, PRE (1999)" is well-known. ⇒ Theory for homogeneous cooling state Many people use this theory "without doubt." Boltzmann Enskog

Validity of GD theory (Garzó and Dufty (1999))

• Validity of GD theory is examined by simulations. (e.g. Mitarai & Nakanishi (2007), Chialvo & Sundaresan (2013))

Theory seems to works well for $\varphi \lesssim 0.49$ (Alder transition).

• However, this theory is NOT applicable for sheared flows. ⇒ Why?

Difference between them

Answer: Base state is different!

- Garzó and Dufty's paper:
	- = Homogenous cooling state (no external force)

Base state is homogeneous and isotropic.

 \checkmark Viscosity: determined by the local fluctuation of velocity gradient

• Our interest = sheared flow

Base state is homogeneous but anisotropic.

✓Viscosity: should be determined by homogeneous sheared state

GD theory is NOT applicable as it is.

Our motivation:

To construct the theory by considering a proper base state.

Model and setup

- Particles:
	- \bullet monodisperse (mass m, diameter σ)
	- ⚫Frictionless hard-core potential
	- **Orestitution coefficient** $e(< 1)$ **: constant**
- Sheared periodic boundary condition (with SLLOD and Lees-Edwards)
	- \Rightarrow no physical walls = "idealistic" condition But expected to be realized in the bulk region of the flow of inclined planes
- Event-driven simulations are also done to validate our theoretical results.

Kinetic theory of sheared granular flows

Kinetic theory of sheared granular flows

Time evol. of kinetic stress $\partial_t P_{\alpha\beta}^k + \dot{\gamma} \big(\delta_{\alpha x} P_{y\beta}^k + \delta_{\beta x} P_{y\alpha}^k \big) = - \Lambda_{\alpha\beta}$ **Temperature** T : $T \equiv$ $P_{xx}^k + P_{yy}^k + P_{zz}^k$ $3n$ **Anisotropic temperatures:** $\Delta T \equiv$ $P_{xx}^k-P_{yy}^k$ \overline{n} , $\delta T \equiv$ $P_{xx}^k-P_{zz}^k$ \overline{n} **Set of dynamic equations:** $\partial_t T = -$ 2 3 $\dot{\gamma}P^k_{\chi\chi}$ — 1 3 $\Lambda_{\alpha\alpha}$ $\partial_t \Delta T = -$ 2 \overline{n} $\dot{\gamma}P_{\chi{}\gamma}^{k}$ — 1 \overline{n} $\Lambda_{\chi\chi} - \Lambda_{\chi\chi}$ $\partial_t \delta T = -$ 2 \overline{n} $\dot{\gamma}P_{\chi y}^k - \bigl(2\Lambda_{\chi\chi} + \Lambda_{yy} - \Lambda_{zz} \bigr)$ $\partial_t P_{xy}^k = -\dot{\gamma} P_{yy}^k - \Lambda_{xy}$ for T , ΔT , δT , $P_{\chi y}^k$ **Kinetic stress:** $P_{\alpha\beta}^{k} \equiv m \int dV V_{\alpha} V_{\beta} f(V,t)$ **Only** xx, yy, zz, xy **components are important. Collisional contribution of stress:** $P_{\alpha\beta}^c = \frac{1+e}{4}$ $\frac{1}{4}$ mg₀ $\int dv_1 \int dv_2 \int d\hat{\sigma} \Theta(\hat{\sigma} \cdot v_{12})(\hat{\sigma} \cdot v_{12})^2$ $\left. \hat{\sigma}_{\alpha}\hat{\sigma}_{\beta}\right.$ $\left. \right\vert$ 0 1 $dx f^{(2)}(r - x\sigma, r + (1 - x)\sigma, v_1, v_2; t)$

Why? ⇒ **not closed for the one-body distribution Up to here, no approximation. BUT, not solvable!**

We need a closure.

Two-body distribution is included in $\Lambda_{\alpha\beta} \equiv -m\int dV V_{\alpha} V_{\beta} J(V|f^{(2)})$.

Two approximations as closure

1. Enskog's approximation:

Two-body dist. ⇒ **product of one-body dist. with radial dist. func.**

 $f^{(2)}(r_1,r_1\pm\sigma,\nu_1,\nu_2;t)\simeq g_0(|r_1-r_2|=\sigma,\varphi)f(r_1,\nu_1,t)f(r_1\pm\sigma,\nu_2,t)$ $\simeq g_0(\varphi) f(V_1;t) f(V_2 \mp \dot{\gamma} y \sigma \hat{\sigma}_y e_x;t)$

Radial distribution at contact: (Carnahan-Stirling formula and its denser extension)

$$
g_0(\varphi) = \begin{cases} \frac{1 - \varphi/2}{(1 - \varphi)^3} & (\varphi \le \varphi_f = 0.49) \\ \frac{1 - \varphi_f/2}{(1 - \varphi_f)^3} \frac{\varphi_J - \varphi_f}{\varphi_J - \varphi} & (\varphi_f < \varphi \le \varphi_J = 0.639) \end{cases}
$$

2. Grad's approximation: expression of one-body dist. $f(V;t) = f_{\rm M}(V;t) \big(1 +$ \overline{m} $\frac{1}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta}$ **One-body dist.: Assumption of uniform velocity profile (System is uniform)** $f(r \pm \sigma, v_1, t) = f(V_1 \mp \dot{\gamma} y \sigma \hat{\sigma}_v e_x; t)$

Maxwell distribution:

$$
f_{\rm M}(V;t) = n \left(\frac{m}{2\pi T}\right)^{3/2} \exp\left(-\frac{mV^2}{2T}\right)
$$

Dimensionless kinetic stress:

$$
\Pi_{\alpha\beta} \equiv \frac{P_{\alpha\beta}^k}{nT} - \delta_{\alpha\beta}
$$

Dynamic equations

After these two assumptions,

 $\Lambda_{\alpha\beta}^*(\equiv \Lambda_{\alpha\beta}/nm\sigma^2\dot{\gamma}^3)$ is closed for θ , $\Delta\theta$, $\delta\theta$, $\Pi_{\chi\chi}^*$.

Lower-order terms were already known ⇒

This study: Full-order solutions are derived.

$$
\Lambda_{\alpha\beta}^* = \frac{6\sqrt{2}}{\pi} (1+e) \varphi g_0 \theta^{3/2} \sum_{n=0}^{\infty} \theta^{-\frac{n}{2}} C_{\alpha\beta}^{(n)}(\theta, \Delta\theta, \delta\theta, \Pi_{xy}^*)
$$

Dimensionless quantities:
\n
$$
\theta \equiv \frac{T}{m\sigma^2 \dot{\gamma}^2}, \Delta \theta \equiv \frac{\Delta T}{m\sigma^2 \dot{\gamma}^2}, \delta \theta \equiv \frac{\delta T}{m\sigma^2 \dot{\gamma}^2}, \Pi_{xy}^* \equiv \frac{P_{xy}^k}{m m\sigma^2 \dot{\gamma}^2}
$$

Santos, Montanero, Dufty, & Brey, PRE (1998) Montanero, Garzó, Santos, & Brey, JFM (1999) Takada, Hayakawa, Santos, & Garzó, PRE (2020)

 $1/\sqrt{\theta}$: expansion parameter

Set of closed dynamic equations: $\partial_{\tau}\theta = 2 \frac{1}{2}$ 3 Π^*_{xy} – 3 $Λ^*_{\alpha\alpha}$ $\partial_{\tau} \Delta \theta = -2\Pi_{xy}^{*} - (\Lambda_{xx}^{*} - \Lambda_{yy}^{*})$ $\partial_{\tau}\delta\theta = -2\Pi_{xy}^{*} - \left(2\Lambda_{xx}^{*} + \Lambda_{yy}^{*} - \Lambda_{zz}^{*}\right)$ $\partial_{\tau}\Pi_{xy}^{\ast}=-\big\vert \ \theta\ -$ 2 3 $\Delta\theta$ + 1 3 $\delta\theta$ Λ^*_{xy} $\tau \equiv \dot{\gamma} t$

Dynamics are determined by solving these coupled equations.

Collisional contribution of stress:

$$
P_{\alpha\beta}^{c}(r,t) \approx \frac{1+e}{4}m\sigma^3 \int dV_1 \int dV_2 \int d\widehat{\sigma} \Theta (V_{12} \cdot \widehat{\sigma})(V_{12} \cdot \widehat{\sigma})^2
$$

$$
\times \widehat{\sigma}_{\alpha} \widehat{\sigma}_{\beta} f\left(V_1 + \frac{1}{2} \dot{\gamma} \sigma \widehat{\sigma}_y e_x\right) f\left(V_2 - \frac{1}{2} \dot{\gamma} \sigma \widehat{\sigma}_y e_x\right)
$$

Convergence of the expansion

Some previous studies treated only few terms…

☞ Takada, Hayakawa, Santos, & Garzó PRE (2020)

Question :

How does the truncation of $\Lambda_{\alpha\beta}^*$ **affect the results?**

$$
\Lambda_{\alpha\beta}^* = \frac{6\sqrt{2}}{\pi} (1+e) \varphi g_0 \theta^{3/2} \sum_{n=0}^{N_c} C_{\alpha\beta}^{(n)} \left(\frac{1}{\sqrt{\theta}}\right)^n
$$

For $e \ll 1$ (highly inelastic situation) **Or finite** $\boldsymbol{\varphi}$ (moderately dense situation), the parameter $1/\sqrt{\theta}$ becomes larger.

> **Convergence is very slow.** ⇒ **needs a lot of terms**

Steady dynamics

We now focus on the steady-state.

List of scaled quantities:

- **Temperature:**
- Viscosity: $\eta^* \coloneqq -(\Pi_{xy}^* + \Pi_{xy}^{c*})$
- **Macroscopic friction coefficient:** $\mu = -P_{xy}/P$

• **Normal stress differences:**

$$
N_1 := (P_{xx} - P_{yy})/P, N_2 := (P_{yy} - P_{zz})/P
$$

$$
P_{\alpha\beta}^{c}(\mathbf{r},t) \approx \frac{1+e}{4} m\sigma^3 \int d\mathbf{V}_1 \int d\mathbf{V}_2 \int d\hat{\boldsymbol{\sigma}} \Theta (\mathbf{V}_{12} \cdot \hat{\boldsymbol{\sigma}}) (\mathbf{V}_{12} \cdot \hat{\boldsymbol{\sigma}})^2
$$

$$
\times \hat{\sigma}_{\alpha} \hat{\sigma}_{\beta} f\left(\mathbf{V}_1 + \frac{1}{2} \dot{\gamma} \sigma \hat{\sigma}_y \mathbf{e}_x\right) f\left(\mathbf{V}_2 - \frac{1}{2} \dot{\gamma} \sigma \hat{\sigma}_y \mathbf{e}_x\right),
$$

We will plot these quantities against the volume fraction φ and the restitution coefficient e .

Scaled kinetic temperature & viscosity

Plots of θ and η^* against the volume fraction φ (for various e)

Shows good agreement with the MD simulations up to 50% **. But seems also good with the theory by Garzó and Dufty (1999)? No difference? Why?**

This is a log-plot magic!

Kinetic temperature & viscosity

Ratio of the viscosity η **from our theory to Garzó and Dufty's theory** η_{GD} **against the restitution coefficient** e and the volume fraction φ

Garzó and Dufty's theory: deviations for $e \ll 1$ or $\varphi \ll 1$ ⇒ **Our theory can capture the behavior.**

However…

Our theory: discrepancy appears for $\varphi \geq 0.4$ and $e \geq 0.9$ Why? This might be because $e = 1$ is singular.

(Macroscopic) friction coefficient

(Macroscopic) friction coefficient $\mu \equiv -P_{xy}/P$

Better agreement for dilute regime Poor agreement for dense regime ($\varphi \ge 0.5$ **)**

 $\varphi_c \simeq 0.5$ might be the upper **limit of the kinetic theory.**

Normal stress differences

- Because the system is anistropic, the normal stress differences are also important. $\mathcal{N}_1 \equiv \frac{\mathbf{r}_{xx}}{2}$
- GD theory cannot explain these quantities.

Qualitatively agree with each other. However, the theory underestimates \mathcal{N}_2 for $\varphi \ll 1$. **Why?**

16

Normal stress differences:

, \mathcal{N}_2 \equiv

 $P_{yy}-P_{zz}$

 \overline{P}

 $P_{xx}-P_{yy}$

 \overline{P}

Comparison with similar approach

• Saha & Alam JFM (2016) constructed the theory in terms of the anisotropic Gaussian model.

$$
f(\boldsymbol{c}, \boldsymbol{x}, t) = \frac{n}{(8\pi^3|\boldsymbol{M}|)^{1/2}} \exp\left(-\frac{1}{2}\boldsymbol{C} \cdot \boldsymbol{M}^{-1} \cdot \boldsymbol{C}\right)
$$

Grad's approximation:

$$
f(V; t) = f_{M}(V; t) \left(1 + \frac{m}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta}\right)
$$

• Behaviors of almost of the quantities are similar.

Their theory captures the behavior of $N₂$ in the dilute regime. ⇒ **Their theory seems superior to our theory.**

⇒ **Other corrections are needed in our theory?**

Modification: Effect of non-Gaussianity

Our present approach: Expansion around the Maxwellian

$$
f(\boldsymbol{V};t) = f_{\rm M}(\boldsymbol{V};t) \left(1 + \frac{m}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta}\right)
$$

Maxwell distribution:

$$
f_{\rm M}(V;t) = n \left(\frac{m}{2\pi T}\right)^{3/2} \exp\left(-\frac{mV^2}{2T}\right)
$$

"Non-Gaussianity" is important even in homogeneous cooling state! (Sonine polynomials are often used as polynomial expansion.)

$$
f(V;t) = f_{\rm M}(V;t) \left\{ 1 + a_2 \left[\frac{1}{2} \left(\frac{mV^2}{2T} \right)^2 - \frac{5}{2} \frac{mV^2}{2T} + \frac{15}{8} \right] \right\} \left(1 + \frac{m}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta} \right)
$$

 determines the magnitude of non-Gaussianity. (van Noije & Ernst (1998))

changes the results?

a_2 correction : $e \simeq 0.1$ (strong inelasticity)

Discussion: Existence of physical walls

Physical (bumpy) wall "kicks" particles inward. ⇒ **Walls violate homogeneity of the system.**

Saitoh & Hayakawa, Phys. Rev. E **75**, 021302 (2007)

We should solve the hydrodynamic eqs. more seriously!

$$
D_t \rho = -\rho \nabla \cdot \boldsymbol{v},
$$

\n
$$
\rho D_t \boldsymbol{v} = -\nabla \cdot \boldsymbol{P},
$$

\n
$$
\rho D_t T = -P: (\nabla \boldsymbol{v}) - \nabla \cdot \boldsymbol{q} - \chi,
$$

2D case was solved by Saitoh & Hayakawa. Particles gather in the center of the system.

Assumption used in the previous part (homogeneity) becomes invalid.

Kinetic theoretical treatments to different systems²²

• Similar approach for inertial suspensions \Rightarrow Good agreements with simulations

Summary

- We have revisited the kinetic theory for sheared granular flows.
	- We have constructed the theory using a proper base state.
	- Full-order solution of the collision moment is derived.
- Results
	- Kinetic theory well describes sheared granular flows at least for $\varphi \leq 0.5$.
	- \cdot Friction coefficient μ is well reproduced, but normal stress differences are not.
- Questions (and future work)
	- Non-Gaussianity of the vel. dist. func. is important for $e \ll 1$?
	- Physical wall violates homogeneity.

