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Introduction 

• Understanding of rapid flow of 
dry granular particles is important.

• Our interest: Simple shear flow
(e.g., bulk region of flow down inclined plane)

• Assumption:
particles are frictionless and hard sphere
(diameter 𝝈, mass 𝒎)
⇒ Stress satisfies Bagnold’s law

𝝈𝒙𝒚 ∼ 𝒎 ሶ𝜸𝟐/𝝈

• Kinetic theory (treating vel. dist. func.)
is known to describe the flow.

shear
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Our approach: hydrodynamic description

Try to derive hydrodyn. eqs. 
for granular gas flows

Approach: 
“From dilute to moderately dense”

• Dilute gases (𝝋 ≪ 𝟏): 
inelastic Boltzmann equation

• Moderately dense gases (𝝋 ≲ 𝟎. 𝟓): 
inelastic Enskog equation

• “Garzó and Dufty, PRE (1999)” is well-known.
⇒ Theory for homogeneous cooling state

Many people use this theory “without doubt.” Boltzmann Enskog

?
Our approach

From dilute to dense
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Validity of GD theory (Garzó and Dufty (1999))

• Validity of GD theory is examined by simulations.
(e.g. Mitarai & Nakanishi (2007), Chialvo & Sundaresan (2013))

• However, this theory is NOT applicable for sheared flows.
⇒ Why?

Theory seems to works well for 𝝋 ≲ 𝟎. 𝟒𝟗 (Alder transition).
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Difference between them

• Garzó and Dufty’s paper:
= Homogenous cooling state (no external force)

Base state is homogeneous and isotropic.
✓Viscosity: determined by the local fluctuation 

of velocity gradient

• Our interest = sheared flow
Base state is homogeneous but anisotropic.
✓Viscosity: should be determined 

by homogeneous sheared state

GD theory is NOT applicable as it is.

Our motivation: 

To construct the theory by considering a proper base state.

Answer: Base state is different!
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Model and setup

• Particles: 
⚫monodisperse (mass 𝒎, diameter 𝝈)

⚫Frictionless hard-core potential
⚫restitution coefficient 𝒆(< 𝟏): constant

• Sheared periodic boundary condition (with SLLOD and Lees-Edwards)
⇒ no physical walls = “idealistic” condition

But expected to be realized 
in the bulk region of the flow of 
inclined planes

• Event-driven simulations are also done
to validate our theoretical results.

𝑟

𝑈(𝑟)

𝜎
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Kinetic theory of sheared granular flows

Starting equation (kinetic equation):
𝜕

𝜕𝑡
− ሶ𝛾𝑉𝑦

𝜕

𝜕𝑉𝑥
𝑓 𝑽; 𝑡 = 𝐽 𝑽 𝑓 2

∫ 𝑑𝑽𝑚𝑉𝛼𝑉𝛽 × (kinetic eq. )

Time evol. of kinetic stress

𝜕𝑡𝑃𝛼𝛽
𝑘 + ሶ𝛾 𝛿𝛼𝑥𝑃𝑦𝛽

𝑘 + 𝛿𝛽𝑥𝑃𝑦𝛼
𝑘 = −Λ𝛼𝛽

Kinetic part of the stress: 

𝑃𝛼𝛽
𝑘 ≡ 𝑚∫ 𝑑𝑽𝑉𝛼𝑉𝛽𝑓 𝑽, 𝑡

Collision moment: 

Λ𝛼𝛽 ≡ −𝑚∫ 𝑑𝑽𝑉𝛼𝑉𝛽𝐽 𝑽 𝑓 2

shear collisions

• Collision integral: effect of binary collisions

𝐽 𝑽 𝑓(2) = 𝜎2∫ 𝑑𝑣2∫ 𝑑 ො𝜎Θ 𝑣12 ⋅ ො𝜎 𝑣12 ⋅ ො𝜎
1

𝑒2
𝑓 2 𝑟, 𝑟 − 𝜎, 𝑣1

′′, 𝑣2
′′, 𝑡 − 𝑓 2 𝑟, 𝑟 + 𝜎, 𝑣1, 𝑣2, 𝑡

𝑓 2 𝑟1, 𝑟2, 𝑣1, 𝑣2, 𝑡 : two-body distribution function

※ Kinetic eq. is not closed for one-body dist. func.
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Time evol. of one-body 

vel. dist. func.



Kinetic theory of sheared granular flows

Time evol. of kinetic stress

𝜕𝑡𝑃𝛼𝛽
𝑘 + ሶ𝛾 𝛿𝛼𝑥𝑃𝑦𝛽

𝑘 + 𝛿𝛽𝑥𝑃𝑦𝛼
𝑘 = −Λ𝛼𝛽

Why? ⇒ not closed for the one-body distribution

We need a closure.

Up to here, no approximation. BUT, not solvable!
Two-body distribution

is included in 

Λ𝛼𝛽 ≡ −𝑚∫ 𝑑𝑽𝑉𝛼𝑉𝛽𝐽 𝑽 𝑓 2 .

Temperature 𝑇 :

𝑇 ≡
𝑃𝑥𝑥
𝑘 + 𝑃𝑦𝑦

𝑘 + 𝑃𝑧𝑧
𝑘

3𝑛
Anisotropic temperatures:

Δ𝑇 ≡
𝑃𝑥𝑥
𝑘 − 𝑃𝑦𝑦

𝑘

𝑛
, 𝛿𝑇 ≡

𝑃𝑥𝑥
𝑘 − 𝑃𝑧𝑧

𝑘

𝑛

Set of dynamic equations:

𝜕𝑡𝑇 = −
2

3
ሶ𝛾𝑃𝑥𝑦
𝑘 −

1

3
Λ𝛼𝛼

𝜕𝑡Δ𝑇 = −
2

𝑛
ሶ𝛾𝑃𝑥𝑦
𝑘 −

1

𝑛
Λ𝑥𝑥 − Λ𝑦𝑦

𝜕𝑡𝛿𝑇 = −
2

𝑛
ሶ𝛾𝑃𝑥𝑦
𝑘 − 2Λ𝑥𝑥 + Λ𝑦𝑦 − Λ𝑧𝑧

𝜕𝑡𝑃𝑥𝑦
𝑘 = − ሶ𝛾𝑃𝑦𝑦

𝑘 − Λ𝑥𝑦

for 𝑇, Δ𝑇, 𝛿𝑇, 𝑃𝑥𝑦
𝑘

Kinetic stress: 

𝑃𝛼𝛽
𝑘 ≡ 𝑚∫ 𝑑𝑽𝑉𝛼𝑉𝛽𝑓 𝑽, 𝑡

Only 

𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑥𝑦
components 

are important.

Collisional contribution of stress:

𝑃𝛼𝛽
𝑐 =

1 + 𝑒

4
𝑚𝑔0∫ 𝑑𝑣1∫ 𝑑𝑣2∫ 𝑑 ො𝜎Θ ො𝜎 ⋅ 𝑣12 ො𝜎 ⋅ 𝑣12

2

ො𝜎𝛼 ො𝜎𝛽න
0

1

𝑑𝑥𝑓 2 (𝑟 − 𝑥𝜎, 𝑟 + 1 − 𝑥 𝜎, 𝑣1, 𝑣2; 𝑡)
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Two approximations as closure

1. Enskog’s approximation:

Two-body dist. ⇒ product of one-body dist. with radial dist. func.

𝑓 2 𝑟1, 𝑟1 ± 𝜎, 𝑣1, 𝑣2; 𝑡 ≃ 𝑔0 𝑟1 − 𝑟2 = 𝜎,𝜑 𝑓 𝑟1, 𝑣1, 𝑡 𝑓 𝑟1 ± 𝜎, 𝑣2, 𝑡

≃ 𝑔0 𝜑 𝑓 𝑉1; 𝑡 𝑓 𝑉2 ∓ ሶ𝛾𝑦𝜎 ො𝜎𝑦𝑒𝑥; 𝑡

Radial distribution at contact:
(Carnahan-Stirling formula and its denser extension)

𝑔0 𝜑 =

1 − 𝜑/2

1 − 𝜑 3 (𝜑 ≤ 𝜑f = 0.49)

1 − 𝜑f/2

1 − 𝜑f
3

𝜑J − 𝜑f
𝜑J − 𝜑

(𝜑f < 𝜑 < 𝜑J = 0.639)

One-body dist.:
Assumption of uniform velocity profile

(System is uniform)

𝑓 𝒓 ± 𝝈, 𝒗1, 𝑡 = 𝑓 𝑽1 ∓ ሶ𝛾𝑦𝜎 ො𝜎𝑦𝒆𝑥; 𝑡

2. Grad’s approximation:
expression of one-body dist.

𝑓 𝑽; 𝑡 = 𝑓M 𝑽; 𝑡 1 +
𝑚

2𝑇
Π𝛼𝛽𝑉𝛼𝑉𝛽

Maxwell distribution:

𝑓M 𝑽; 𝑡 = 𝑛
𝑚

2𝜋𝑇

3/2

exp −
𝑚𝑉2

2𝑇

Dimensionless kinetic stress:

Π𝛼𝛽 ≡
𝑃𝛼𝛽
𝑘

𝑛𝑇
− 𝛿𝛼𝛽
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Dynamic equations Dimensionless quantities:

𝜃 ≡
𝑇

𝑚𝜎2 ሶ𝛾2
, Δ𝜃 ≡

Δ𝑇

𝑚𝜎2 ሶ𝛾2
, 𝛿𝜃 ≡

𝛿𝑇

𝑚𝜎2 ሶ𝛾2
, Π𝑥𝑦

∗ ≡
𝑃𝑥𝑦
𝑘

𝑛𝑚𝜎2 ሶ𝛾2
After these two assumptions, 

𝚲𝜶𝜷
∗ (≡ 𝚲𝜶𝜷/𝒏𝒎𝝈𝟐 ሶ𝜸𝟑) is closed for 𝜃, Δ𝜃, 𝛿𝜃, Π𝑥𝑦

∗ .
Santos, Montanero, Dufty, & Brey, PRE (1998)

Montanero, Garzó, Santos, & Brey, JFM (1999)

Takada, Hayakawa, Santos, & Garzó, PRE (2020)

Lower-order terms were already known ⇒

𝟏/ 𝜽: expansion parameter

Set of closed dynamic equations:

𝜕𝜏𝜃 = −
2

3
Π𝑥𝑦
∗ −

1

3
Λ𝛼𝛼
∗

𝜕𝜏Δ𝜃 = −2Π𝑥𝑦
∗ − (Λ𝑥𝑥

∗ − Λ𝑦𝑦
∗ )

𝜕𝜏𝛿𝜃 = −2Π𝑥𝑦
∗ − 2Λ𝑥𝑥

∗ + Λ𝑦𝑦
∗ − Λ𝑧𝑧

∗

𝜕𝜏Π𝑥𝑦
∗ = − 𝜃 −

2

3
Δ𝜃 +

1

3
𝛿𝜃 − Λ𝑥𝑦

∗

𝜏 ≡ ሶ𝛾𝑡

Dynamics are determined 

by solving these coupled 

equations.

Collisional contribution of stress:

10

𝚲𝜶𝜷
∗ =

𝟔 𝟐

𝝅
𝟏 + 𝒆 𝝋𝒈𝟎𝜽

𝟑/𝟐෍

𝒏=𝟎

∞

𝜽−
𝒏
𝟐𝒞𝜶𝜷

𝒏
(𝜽, 𝚫𝜽, 𝜹𝜽, 𝚷𝐱𝐲

∗ )

This study: Full-order solutions are derived.



Convergence of the expansion

Question:

How does the truncation of 𝚲𝜶𝜷
∗

affect the results? 

𝚲𝜶𝜷
∗ =

𝟔 𝟐

𝝅
𝟏 + 𝒆 𝝋𝒈𝟎𝜽

𝟑/𝟐 ෍

𝒏=𝟎

𝑵c

𝒞𝜶𝜷
𝒏 𝟏

𝜽

𝒏

Some previous studies treated only few terms…
☞ Takada, Hayakawa, Santos, & Garzó PRE (2020)

For 𝒆 ≪ 𝟏 (highly inelastic situation) 

or finite 𝝋 (moderately dense situation), 

the parameter 𝟏/ 𝜽 becomes larger.

𝜑 = 0.30

Convergence is very slow.

⇒ needs a lot of terms
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Steady dynamics

We now focus on the steady-state.

Set of dynamic eqs.:

𝟎 = −
𝟐

𝟑
𝚷𝒙𝒚
∗ −

𝟏

𝟑
𝚲𝜶𝜶
∗

𝟎 = −𝟐𝚷𝒙𝒚
∗ − (𝚲𝒙𝒙

∗ − 𝚲𝒚𝒚
∗ )

𝟎 = −𝟐𝚷𝒙𝒚
∗ − 𝟐𝚲𝒙𝒙

∗ + 𝚲𝒚𝒚
∗ − 𝚲𝒛𝒛

∗

𝟎 = − 𝜽 −
𝟐

𝟑
𝚫𝜽 +

𝟏

𝟑
𝜹𝜽 − 𝚲𝒙𝒚

∗

List of scaled quantities:

• Temperature: 𝜽
• Viscosity: 𝜼∗ ≔ −(𝚷𝒙𝒚

∗ + 𝚷𝒙𝒚
𝒄∗ )

• Macroscopic friction coefficient: 𝝁 ≔ −𝑷𝒙𝒚/𝑷

• Normal stress differences: 

𝑵𝟏 ≔ (𝑷𝒙𝒙 − 𝑷𝒚𝒚)/𝑷, 𝑵𝟐 ≔ (𝑷𝒚𝒚 − 𝑷𝒛𝒛)/𝑷
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We will plot these quantities 

against the volume fraction 𝝋 and the restitution coefficient 𝒆.



Scaled kinetic temperature & viscosity
Plots of 𝜽 and 𝜼∗ against the volume fraction 𝝋 (for various 𝒆)

Shows good agreement with the MD simulations up to 𝟓𝟎%.

But seems also good with the theory by Garzó and Dufty (1999)?

No difference? Why?
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This is a log-plot magic!



Kinetic temperature & viscosity

Ratio of the viscosity 𝜼 from our theory to Garzó and Dufty’s theory 𝜼𝐆𝐃
against the restitution coefficient 𝒆 and the volume fraction 𝝋

However…

Our theory: discrepancy appears for 𝝋 ≥ 𝟎. 𝟒 and 𝒆 ≥ 𝟎. 𝟗
Why? This might be because 𝒆 = 𝟏 is singular.

Garzó and Dufty’s theory: deviations for 𝒆 ≪ 𝟏 or 𝝋 ≪ 𝟏
⇒ Our theory can capture the behavior.
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(Macroscopic) friction coefficient

(Macroscopic) friction coefficient 𝝁 ≡ −𝑷𝒙𝒚/𝑷

Better agreement for dilute regime

Poor agreement for dense regime (𝝋 ≥ 𝟎. 𝟓)
𝝋𝐜 ≃ 𝟎. 𝟓 might be the upper 

limit of the kinetic theory.
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Normal stress differences

• Because the system is anistropic, 
the normal stress differences are also important. 

• GD theory cannot explain these quantities.

Normal stress differences:

𝒩𝟏 ≡
𝑷𝒙𝒙 − 𝑷𝒚𝒚

𝑷
,𝒩𝟐 ≡

𝑷𝒚𝒚 − 𝑷𝒛𝒛

𝑷

Qualitatively agree with each other.

However, the theory underestimates 𝒩𝟐 for 𝝋 ≪ 𝟏.

Why?
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Comparison with similar approach

• Saha & Alam JFM (2016) constructed the theory 
in terms of the anisotropic Gaussian model.

• Behaviors of almost of the quantities are similar. 

Grad’s approximation:

𝑓 𝑽; 𝑡 = 𝑓M 𝑽; 𝑡 1 +
𝑚

2𝑇
Π𝛼𝛽𝑉𝛼𝑉𝛽

Their theory captures the behavior of 𝑵𝟐 in the dilute regime.

⇒ Their theory seems superior to our theory.

⇒ Other corrections are needed in our theory?

17



Modification: Effect of non-Gaussianity

Our present approach:

Expansion around the Maxwellian

𝑓 𝑽; 𝑡 = 𝑓M 𝑽; 𝑡 1 +
𝑚

2𝑇
Π𝛼𝛽𝑉𝛼𝑉𝛽

Maxwell distribution:

𝑓M 𝑽; 𝑡 = 𝑛
𝑚

2𝜋𝑇

3/2

exp −
𝑚𝑉2

2𝑇
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“Non-Gaussianity” is important even in homogeneous cooling state!
(Sonine polynomials are often used as polynomial expansion.)

𝑓 𝑽; 𝑡 = 𝑓M 𝑽; 𝑡 1 + 𝑎2
1

2

𝑚𝑉2

2𝑇

2

−
5

2

𝑚𝑉2

2𝑇
+
15

8
1 +

𝑚

2𝑇
Π𝛼𝛽𝑉𝛼𝑉𝛽

𝒂𝟐 determines the magnitude of non-Gaussianity.
(van Noije & Ernst (1998))

𝒂𝟐 changes the results?



𝒂𝟐 correction: 𝒆 ≃ 𝟎. 𝟖 (small inelasticity)

Good agreements, 

but the correction is invisible.

Still poor agreements

Why?
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Viscosity & frict. coeff. 

are insensitive to 𝒂𝟐.

Non-Gaussianity 𝒂𝟐 ≃ 𝟎
for 𝒆 ≃ 𝟎. 𝟖

What happens for 

strong inelastic case?



𝒂𝟐 correction : 𝒆 ≃ 𝟎. 𝟏 (strong inelasticity)

Viscosity & frict. coeff. 

are still insensitive to 𝒂𝟐.

Although the simulation data are 

insufficient, the trend of 𝑵𝟐

seems good, but that of 𝑵𝟏 seems 

bad.

⇒ I have no idea.
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Normal stress diffs. are 

sensitive to 𝒂𝟐.



Discussion: Existence of physical walls
Physical (bumpy) wall “kicks” particles inward.

⇒ Walls violate homogeneity of the system.

Assumption used in the previous part 

(homogeneity) becomes invalid.

2D case was solved by Saitoh & Hayakawa.

Particles gather in the center of the system.

Saitoh & Hayakawa, 

Phys. Rev. E 75, 021302 (2007)
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We should solve 

the hydrodynamic eqs. 

more seriously!



Kinetic theoretical treatments to different systems

• Similar approach for inertial suspensions
⇒ Good agreements with simulations
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Hard-core Soft-core

Discontinuous jump 

of viscosity for 𝝋 ≪ 𝟏

Hayakawa & Takada,

PTEP 2019, 083J01 (2019)

Discontinuous to 

continuous as 𝝋
Hayakawa, Takada, & Garzó,

Phys. Rev. E 96, 042903 (2017)

Takada, Hayakawa, Santos, & Garzó,

Phys. Rev. E 102, 022907 (2020)

Two-step 

discontinuous jump

Sugimoto & Takada,

J. Phys. Soc. Jpn. 89, 084803 (2020)



Summary

• We have revisited the kinetic theory for sheared granular flows.

• We have constructed the theory using a proper base state.

• Full-order solution of the collision moment is derived.

• Results

• Kinetic theory well describes sheared 
granular flows at least for 𝝋 ≤ 𝟎. 𝟓.

• Friction coefficient 𝝁 is well reproduced, 
but normal stress differences are not.

• Questions (and future work)
• Non-Gaussianity of the vel. dist. func. is important for 𝒆 ≪ 𝟏?

• Physical wall violates homogeneity.

23


	スライド 1
	スライド 2: Introduction 
	スライド 3: Our approach: hydrodynamic description
	スライド 4: Validity of GD theory (Garzó and Dufty (1999))
	スライド 5: Difference between them
	スライド 6: Model and setup
	スライド 7: Kinetic theory of sheared granular flows
	スライド 8: Kinetic theory of sheared granular flows
	スライド 9: Two approximations as closure
	スライド 10: Dynamic equations
	スライド 11: Convergence of the expansion
	スライド 12: Steady dynamics
	スライド 13: Scaled kinetic temperature & viscosity
	スライド 14: Kinetic temperature & viscosity
	スライド 15: (Macroscopic) friction coefficient
	スライド 16: Normal stress differences
	スライド 17: Comparison with similar approach
	スライド 18: Modification: Effect of non-Gaussianity
	スライド 19: 太字斜体 a. 下付き 太字 2 、 、 correction: 太字斜体 e ぜんきんてきに ひとしい 太字 0 . 太字 8  (small inelasticity)
	スライド 20: 太字斜体 a. 下付き 太字 2 、 、 correction : 太字斜体 e ぜんきんてきに ひとしい 太字 0 . 太字 1  (strong inelasticity)
	スライド 21: Discussion: Existence of physical walls
	スライド 22: Kinetic theoretical treatments to different systems
	スライド 23: Summary

