

5th week (jamming and rheology of dense matters), Frontiers in Non-equilibrium Physics 2024

Kinetic theory of moderately dense dry granular particles under a simple shear

Satoshi Takada (Tokyo Univ. Agri. & Tech.) In collaboration with Shunsuke Iizuka¹ & Hisao Hayakawa² 1 Tokyo Univ. Agri. & Tech., 2 YITP, Kyoto Univ.

Introduction

- Understanding of rapid flow of dry granular particles is important.
- Our interest: Simple shear flow (e.g., bulk region of flow down inclined plane)
- Assumption: particles are frictionless and hard sphere (diameter σ , mass m)
 - \Rightarrow Stress satisfies Bagnold's law $\sigma_{xy} \sim m \dot{\gamma}^2 / \sigma$
- <u>Kinetic theory</u> (treating vel. dist. func.) is known to describe the flow.

Our approach: hydrodynamic description

Try to derive hydrodyn. eqs. for granular gas flows

Approach:

- "From dilute to moderately dense"
- Dilute gases ($\phi \ll 1$): inelastic Boltzmann equation
- Moderately dense gases ($\varphi \lesssim 0.5$): inelastic Enskog equation
- "Garzó and Dufty, PRE (1999)" is well-known.
 ⇒ Theory for homogeneous cooling state Many people use this theory "without doubt."

Boltzmann

Enskog

Validity of GD theory (Garzó and Dufty (1999))

Validity of GD theory is examined by simulations.
 (e.g. Mitarai & Nakanishi (2007), Chialvo & Sundaresan (2013))

Theory seems to works well for $\varphi \lesssim 0.49$ (Alder transition).

However, this theory is NOT applicable for sheared flows.
 ⇒ Why?

4

Difference between them

Answer: Base state is different!

- <u>Garzó and Dufty's paper</u>:
 - = Homogenous cooling state (no external force)
 - Base state is homogeneous and isotropic.
 - ✓Viscosity: determined by the local fluctuation of velocity gradient
- <u>Our interest</u> = sheared flow
 - <u>Base state</u> is homogeneous but anisotropic.
 - ✓ Viscosity: should be determined by homogeneous sheared state

GD theory is NOT applicable as it is.

Our motivation:

To construct the theory by considering a proper base state.

Model and setup

- Particles:
 - •monodisperse (mass m, diameter σ)
 - •Frictionless hard-core potential
 - •restitution coefficient e(< 1): constant
- Sheared periodic boundary condition (with SLLOD and Lees-Edwards)
 - ⇒ no physical walls = "idealistic" condition But expected to be realized in the bulk region of the flow of inclined planes
- Event-driven simulations are also done to validate our theoretical results.

Kinetic theory of sheared granular flows

Kinetic theory of sheared granular flows

Only xx, yy, zz, xy components are important.

__.

$$\frac{\text{Ine evol. of kinetic stress}}{\partial_t P_{\alpha\beta}^k + \dot{\gamma} \left(\delta_{\alpha x} P_{y\beta}^k + \delta_{\beta x} P_{y\alpha}^k \right)} = -\Lambda_{\alpha\beta}$$

$$\frac{\text{Set of dynamic equations:}}{\partial_t T = -\frac{2}{3} \dot{\gamma} P_{xy}^k - \frac{1}{3} \Lambda_{\alpha\alpha}} \text{ for } T, \Delta T, \delta T, P_{xy}^k}$$

$$\frac{\partial_t \Delta T = -\frac{2}{n} \dot{\gamma} P_{xy}^k - \frac{1}{n} \left(\Lambda_{xx} - \Lambda_{yy} \right)}{\partial_t \delta T = -\frac{2}{n} \dot{\gamma} P_{xy}^k - \left(2\Lambda_{xx} + \Lambda_{yy} - \Lambda_{zz} \right)}$$

$$\frac{\partial_t P_{xy}^k = -\dot{\gamma} P_{yy}^k - \Lambda_{xy}}{\partial_t P_{xy}^k = -\dot{\gamma} P_{yy}^k - \Lambda_{xy}}$$

~ • •

Kinetic stress: $P_{\alpha\beta}^{k} \equiv m \int dV V_{\alpha} V_{\beta} f(V, t)$

Temperature *T*:

$$T \equiv \frac{P_{xx}^{k} + P_{yy}^{k} + P_{zz}^{k}}{3n}$$
Anisotropic temperatures:

$$\Delta T \equiv \frac{P_{xx}^{k} - P_{yy}^{k}}{n}, \delta T \equiv \frac{P_{xx}^{k} - P_{zz}^{k}}{n}$$
Collisional contribution of stress:

$$P_{\alpha\beta}^{c} = \frac{1+e}{4}mg_{0}\int dv_{1}\int dv_{2}\int d\hat{\sigma}\Theta(\hat{\sigma} \cdot v_{12})(\hat{\sigma} \cdot v_{12})^{2}$$

$$\hat{\sigma}_{\alpha}\hat{\sigma}_{\beta}\int_{0}^{1} dxf^{(2)}(r - x\sigma, r + (1 - x)\sigma, v_{1}, v_{2}; t)$$

Up to here, no approximation. BUT, not solvable!

Why? \Rightarrow not closed for the one-body distribution

Two-body distribution is included in $\Lambda_{\alpha\beta} \equiv -m \int dV V_{\alpha} V_{\beta} J(V|f^{(2)}).$

Two approximations as closure

1. <u>Enskog's approximation</u>:

Two-body dist. ⇒ product of one-body dist. with radial dist. func.

 $\begin{aligned} &f^{(2)}(r_1, r_1 \pm \sigma, v_1, v_2; t) \simeq g_0(|r_1 - r_2| = \sigma, \varphi) f(r_1, v_1, t) f(r_1 \pm \sigma, v_2, t) \\ &\simeq g_0(\varphi) f(V_1; t) f(V_2 \mp \dot{\gamma} y \sigma \hat{\sigma}_y e_x; t) \end{aligned}$

<u>Radial distribution at contact</u>: (Carnahan-Stirling formula and its denser extension)

 $g_{0}(\varphi) = \begin{cases} \frac{1 - \varphi/2}{(1 - \varphi)^{3}} & (\varphi \leq \varphi_{\rm f} = 0.49) \\ \frac{1 - \varphi_{\rm f}/2}{(1 - \varphi_{\rm f})^{3}} \frac{\varphi_{\rm J} - \varphi_{\rm f}}{\varphi_{\rm J} - \varphi} & (\varphi_{\rm f} < \varphi < \varphi_{\rm J} = 0.639) \end{cases}$

2. <u>Grad's approximation</u>: expression of one-body dist. $f(V;t) = f_{\rm M}(V;t) \left(1 + \frac{m}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta}\right)$ **<u>One-body dist.</u> Assumption of uniform velocity profile (System is uniform)** $f(\mathbf{r} \pm \boldsymbol{\sigma}, \boldsymbol{v}_1, t) = f(V_1 \mp \dot{\gamma} y \sigma \hat{\sigma}_y \boldsymbol{e}_x; t)$

Maxwell distribution:

$$f_{\rm M}(\boldsymbol{V};t) = n \left(\frac{m}{2\pi T}\right)^{3/2} \exp\left(-\frac{mV^2}{2T}\right)$$

Dimensionless kinetic stress:

$$\Pi_{\alpha\beta} \equiv \frac{P_{\alpha\beta}^k}{nT} - \delta_{\alpha\beta}$$

Dynamic equations

After these two assumptions,

 $\Lambda^*_{\alpha\beta}(\equiv \Lambda_{\alpha\beta}/nm\sigma^2\dot{\gamma}^3)$ is closed for $\theta, \Delta\theta, \delta\theta, \Pi^*_{xy}$.

Dimensionless quantities: $\theta \equiv \frac{T}{m\sigma^2 \dot{\gamma}^2}, \Delta \theta \equiv \frac{\Delta T}{m\sigma^2 \dot{\gamma}^2}, \delta \theta \equiv \frac{\delta T}{m\sigma^2 \dot{\gamma}^2}, \Pi_{xy}^* \equiv \frac{P_{xy}^k}{nm\sigma^2 \dot{\gamma}^2}$

Santos, Montanero, Dufty, & Brey, PRE (1998) Montanero, Garzó, Santos, & Brey, JFM (1999) Takada, Hayakawa, Santos, & Garzó, PRE (2020)

This study: Full-order solutions are derived.

Lower-order terms were already known \Rightarrow

$$\Lambda_{\alpha\beta}^* = \frac{6\sqrt{2}}{\pi} (1+e)\varphi g_0 \theta^{3/2} \sum_{n=0}^{\infty} \theta^{-\frac{n}{2}} \mathcal{C}_{\alpha\beta}^{(n)}(\theta, \Delta\theta, \delta\theta, \Pi_{xy}^*)$$

 $1/\sqrt{\theta}$: expansion parameter

 $\begin{aligned} \underline{\text{Set of closed dynamic equations:}} \\ \partial_{\tau}\theta &= -\frac{2}{3}\Pi_{xy}^{*} - \frac{1}{3}\Lambda_{\alpha\alpha}^{*} \qquad \tau \equiv \dot{\gamma}t \\ \partial_{\tau}\Delta\theta &= -2\Pi_{xy}^{*} - (\Lambda_{xx}^{*} - \Lambda_{yy}^{*}) \\ \partial_{\tau}\delta\theta &= -2\Pi_{xy}^{*} - (2\Lambda_{xx}^{*} + \Lambda_{yy}^{*} - \Lambda_{zz}^{*}) \\ \partial_{\tau}\Pi_{xy}^{*} &= -\left(\theta - \frac{2}{3}\Delta\theta + \frac{1}{3}\delta\theta\right) - \Lambda_{xy}^{*} \end{aligned}$

Dynamics are determined by solving these coupled equations.

Collisional contribution of stress:

$$P^{c}_{\alpha\beta}(\boldsymbol{r},t) \approx \frac{1+e}{4}m\sigma^{3}\int d\boldsymbol{V}_{1}\int d\boldsymbol{V}_{2}\int d\widehat{\boldsymbol{\sigma}}\Theta(\boldsymbol{V}_{12}\cdot\widehat{\boldsymbol{\sigma}})(\boldsymbol{V}_{12}\cdot\widehat{\boldsymbol{\sigma}})^{2} \\ \times \widehat{\sigma}_{\alpha}\widehat{\sigma}_{\beta}f\left(\boldsymbol{V}_{1}+\frac{1}{2}\dot{\gamma}\sigma\widehat{\sigma}_{y}\boldsymbol{e}_{x}\right)f\left(\boldsymbol{V}_{2}-\frac{1}{2}\dot{\gamma}\sigma\widehat{\sigma}_{y}\boldsymbol{e}_{x}\right)$$

10

Convergence of the expansion

Some previous studies treated only few terms...

🖙 Takada, Hayakawa, Santos, & Garzó PRE (2020)

Question:

How does the truncation of $\Lambda^*_{\alpha\beta}$ affect the results?

$$\Lambda_{\alpha\beta}^* = \frac{6\sqrt{2}}{\pi} (1+e)\varphi g_0 \theta^{3/2} \sum_{n=0}^{N_c} C_{\alpha\beta}^{(n)} \left(\frac{1}{\sqrt{\theta}}\right)^n$$

For $e \ll 1$ (highly inelastic situation) or finite φ (moderately dense situation), the parameter $1/\sqrt{\theta}$ becomes larger.

> Convergence is very slow. ⇒ needs a lot of terms

Steady dynamics

We now focus on the steady-state.

Set of dynamic eqs.:

$$0 = -\frac{2}{3}\Pi_{xy}^* - \frac{1}{3}\Lambda_{\alpha\alpha}^*$$

$$0 = -2\Pi_{xy}^* - (\Lambda_{xx}^* - \Lambda_{yy}^*)$$

$$0 = -2\Pi_{xy}^* - (2\Lambda_{xx}^* + \Lambda_{yy}^* - \Lambda_{zz}^*)$$

$$0 = -\left(\theta - \frac{2}{3}\Delta\theta + \frac{1}{3}\delta\theta\right) - \Lambda_{xy}^*$$

List of scaled quantities:

- Temperature: θ
 - Viscosity: $\eta^* \coloneqq -(\Pi^*_{xy} + \Pi^{c*}_{xy})$
- Macroscopic friction coefficient: $\mu \coloneqq -P_{xy}/P$

$$N_1 \coloneqq (P_{xx} - P_{yy})/P$$
, $N_2 \coloneqq (P_{yy} - P_{zz})/P$

$$P_{\alpha\beta}^{c}(\boldsymbol{r},t) \approx \frac{1+e}{4}m\sigma^{3}\int d\boldsymbol{V}_{1}\int d\boldsymbol{V}_{2}\int d\hat{\boldsymbol{\sigma}}\Theta(\boldsymbol{V}_{12}\cdot\hat{\boldsymbol{\sigma}})(\boldsymbol{V}_{12}\cdot\hat{\boldsymbol{\sigma}})^{2}$$
$$\times \hat{\sigma}_{\alpha}\hat{\sigma}_{\beta}f\left(\boldsymbol{V}_{1}+\frac{1}{2}\dot{\gamma}\sigma\hat{\sigma}_{y}\boldsymbol{e}_{x}\right)f\left(\boldsymbol{V}_{2}-\frac{1}{2}\dot{\gamma}\sigma\hat{\sigma}_{y}\boldsymbol{e}_{x}\right),$$

We will plot these quantities against the volume fraction φ and the restitution coefficient e.

Scaled kinetic temperature & viscosity

Plots of θ and η^* against the volume fraction φ (for various *e*)

Shows good agreement with the MD simulations up to 50%. But seems also good with the theory by Garzó and Dufty (1999)? No difference? Why?

This is a **log-plot** magic!

Kinetic temperature & viscosity

Ratio of the viscosity η from our theory to Garzó and Dufty's theory η_{GD} against the restitution coefficient *e* and the volume fraction φ

Garzó and Dufty's theory: deviations for $e \ll 1$ or $\varphi \ll 1$ \Rightarrow Our theory can capture the behavior. However...

Our theory: discrepancy appears for $\varphi \ge 0.4$ and $e \ge 0.9$ Why? This might be because e = 1 is singular.

(Macroscopic) friction coefficient

(Macroscopic) friction coefficient $\mu \equiv -P_{xy}/P$

Better agreement for dilute regime Poor agreement for dense regime ($\varphi \ge 0.5$)

 $\varphi_{\rm c} \simeq 0.5$ might be the upper limit of the kinetic theory.

Normal stress differences

- Because the system is anistropic,
 the normal stress differences are also important.
- GD theory cannot explain these quantities.

Qualitatively agree with each other. However, the theory underestimates \mathcal{N}_2 for $\varphi \ll 1$. Why?

16

Comparison with similar approach

• Saha & Alam JFM (2016) constructed the theory in terms of the anisotropic Gaussian model.

$$f(\boldsymbol{c}, \boldsymbol{x}, t) = \frac{n}{(8\pi^3 |\boldsymbol{M}|)^{1/2}} \exp\left(-\frac{1}{2}\boldsymbol{C} \cdot \boldsymbol{M}^{-1} \cdot \boldsymbol{C}\right)$$

$$\frac{\mathbf{Grad's approximation}:}{f(\mathbf{V};t) = f_{\mathrm{M}}(\mathbf{V};t) \left(1 + \frac{m}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta}\right)}$$

• Behaviors of almost of the quantities are similar.

Their theory captures the behavior of N_2 in the dilute regime. \Rightarrow Their theory seems superior to our theory.

⇒ Other corrections are needed in our theory?

Modification: Effect of non-Gaussianity

Our present approach: Expansion around the Maxwellian

$$f(\boldsymbol{V};t) = f_{\mathrm{M}}(\boldsymbol{V};t) \left(1 + \frac{m}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta}\right)$$

Maxwell distribution:

$$f_{\rm M}(\mathbf{V};t) = n \left(\frac{m}{2\pi T}\right)^{3/2} \exp\left(-\frac{mV^2}{2T}\right)$$

"Non-Gaussianity" is important even in homogeneous cooling state! (Sonine polynomials are often used as polynomial expansion.)

$$f(\mathbf{V};t) = f_{\rm M}(\mathbf{V};t) \left\{ 1 + a_2 \left[\frac{1}{2} \left(\frac{mV^2}{2T} \right)^2 - \frac{5}{2} \frac{mV^2}{2T} + \frac{15}{8} \right] \right\} \left(1 + \frac{m}{2T} \Pi_{\alpha\beta} V_{\alpha} V_{\beta} \right)$$

 a_2 determines the magnitude of non-Gaussianity. (van Noije & Ernst (1998))

 a_2 changes the results?

a_2 correction : $e \simeq 0.1$ (strong inelasticity)

20

Discussion: Existence of physical walls

Physical (bumpy) wall "kicks" particles inward. ⇒ Walls violate homogeneity of the system.

Saitoh & Hayakawa, Phys. Rev. E **75**, 021302 (2007)

We should solve the hydrodynamic eqs. more seriously!

$$D_t \rho = -\rho \nabla \cdot \boldsymbol{v},$$

$$\rho D_t \boldsymbol{v} = -\nabla \cdot \boldsymbol{P},$$

$$\rho D_t T = -\boldsymbol{P}:(\nabla \boldsymbol{v}) - \nabla \cdot \boldsymbol{q} - \chi,$$

2D case was solved by Saitoh & Hayakawa. Particles gather in the center of the system.

Assumption used in the previous part (homogeneity) becomes invalid.

Kinetic theoretical treatments to different systems²²

Similar approach for inertial suspensions
 ⇒ Good agreements with simulations

<u>Summary</u>

- We have revisited the kinetic theory for sheared granular flows.
 - We have constructed the theory using a proper base state.
 - Full-order solution of the collision moment is derived.
- Results
 - Kinetic theory well describes sheared granular flows at least for $\varphi \leq 0.5$.
 - Friction coefficient μ is well reproduced, but normal stress differences are not.
- Questions (and future work)
 - Non-Gaussianity of the vel. dist. func. is important for $e \ll 1?$
 - Physical wall violates homogeneity.

