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Johari-Goldstein (JG) relaxation

M. D. Ediger, et al. J. Chem. 
Phys. 100, 13200 (1996)

K. Shiraishi et al., 
PNAS 120, e2215153120 (2023)

・Johari‒Goldstein relaxation, or slow β, is one of the secondary relaxation 
modes observed in glasses, supercooled liquid and other disordered materials.  
・It is widely observed in polymers, small organic molecules, metallic glass, ionic 
glass,..
・JG relaxation is related to the mechanical properties of glasses, because theα-
relaxation almost freezes and is not relevant in glasses.   
・It is speculated to be a precursor of the structural α-relaxation,  however the 
microscopic mechanism of the Johari-Goldstein relaxation has not been 
definitively identified.

𝜏 ∝ exp 𝐸/𝑘 𝑇

K. L. Ngai, Relaxation and diffusion in 
complex systems. (Springer, Berlin, 
2011).Y.-B. Yu, et al., Nat. Sci. Rev. 1, 429 (2014)



Purpose of this work
The purpose of this work is to clarify the physical mechanisms of 
Johari-Goldstein mode, by means of microscopic experiments and 
molecular dynamics simulations. 

Johariʼs scenario 
The thermally activated motion occurs in restricted regions called “islands of mobility”

Williams and Watts scenario
All molecules partially relax due to the thermal activated motion

Or others?

We use an ionic glass Ca0.4K0.6(NO3)1.4 and metallic glass ZrCuAl as 
model systems. 
They are accessible with our experimental and numerical methods. 

ZrCuAl CaKNO3



Quasi-elastic scattering using gamma-rays
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JG relaxation in glycerol

It can measure slow dynamics 
ranging 10-1000nsec in 
atomistic length scale. 

Applicable to microscopic slow 
dynamics in liquids and soft 
matters
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Ionic glass Ca0.4K0.6(NO3)1.4
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Mag. B 50, 657
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(1) Intermediate scattering at 𝑞 2.9Å corresponds to mechanical 
relaxation 
(2) Wave number dependence of the relaxation time 𝜏 ∝ 𝑞  𝜁 ∼ 3.6
(3) Anomalous stretched exponential parameter  𝛽 ∼ 0.43

𝐹 𝑞, 𝑡 𝐴 exp 𝑡/𝜏

Kohlausch-Williams-Watts(KWW)

C. Mai, et al., Philos. Mag. B 50, 657 (1985).

Ionic glass Ca0.4K0.6(NO3)1.4: Gamma ray QES
Relaxation time vs T Relaxation time vs q

Structure factor

M. Saito, T. Araki, Y. 
Onodera, K. Ohara, M. Seto, 
Y. Yoda, Y. Wakabayashi, 
submitted.

exp 𝑡0.43

Stretching parameter of
Intermediate scattering function
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𝐴 36.1Mcal/mol,𝜎 0.3278Å,𝐶 350.2kcal/ mol ⋅ Å

F. Signorini, J.-L. Barrat and M. L. Klein, J. Chem. Phys. 92, 1294 (1990)

NO 504 K 216 Ca 144

All-atom molecular dynamics simulation

Born-Mayer-Huggins potential

Cooling rate:   1K/nsec (NPT)
Equilibration time : 1𝜇sec (NPT)
Production run: 12𝜇sec (NVT)
10 sampling simulations. 

Samples with the two longest and shorted 
relaxation times are removed from the 
averaging. 
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Static properties of Ionic glass Ca0.4K0.6(NO3)1.4

Radial distribution function

RMC/DFT performed by Yohei Onodera, Koji Ohara

Density vs T
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Rotational motion

Near 𝑇 , the rotational 
motion of NO3 (or the motion 
of the oxygen) is much faster 
than the translational 
motions of ions. 
We focus on the 
translational motions.
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Mechanical relaxation

Mode coupling approximation
C. Mai, et al., Philos. Mag. B 50, 657 (1985).
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Relaxation time vs T
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We can visualize the real-space relaxation picture of the JG mode by analyzing 
molecular dynamics simulation, which are validated by QEGS experiments. 
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Trajectories of ions

Δ𝑡 60nsec Δ𝑡 600nsec Δ𝑡 1200nsec

Δ𝑡 3000nsec

We defined a movement larger than 2.5 
Å in 4 nsec as a jump motion.

We call the particles exhibiting no jump 
in 12 μsec type NJ (non-jump) and the 
others type J (jump).



Correlation between jumping and non-jumping 
particles

Radial distribution function

Type NJ particles exhibit small, but non-
negligible sub-angstrom scale motion in the JG 
time scale even without the jump motions. 

Type J particles are loosely packed compared to 
type NJ ones. 
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Stress relaxation for type NJ near type J 
after their jumps

The motions of type NJ particles are very small (∼ 0.1Å), their stress relaxation is not negligible. 
The stress relaxation of type NJ is triggered by the thermally activated motion of type J. 



The correlation of the directions of the motion for 
type NJ is more remarkable than that for type, 
although the motions are very slow.
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Correlation motions of directions of particle motions Cluster size vs 𝜁

Correlation motions of directions of particle motions

The particles having the larger power
tend to belong to larger clusters.
The large 𝑞-dependence comes from the
confinement effect due to lower mobility
of larger clusters.
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P. M. Reis, Phys. Rev. Lett. 98, 188301 (2007)

q-dependence of the relaxation time

For large 𝑞, the Brownian scaling breaks down to a
stretched exponential with 𝛽 1, which can be attributed to
the presence of dynamic heterogeneities due to caging.



Johari-Goldstein mode in CKN
The QEGS for CKN experiments revealed 
(1) Intermediate scattering function at 𝑞 2.9Å
corresponds to the mechanical response. 
(2) The wave number dependence of the 
relaxation time obeys 𝑞 . . 
(3) Anomalous stretched parameter 0.43. 

The molecular dynamics simulation reproduced 
them quantitively. 
The detailed analyses of the simulation which are 
validated by the experiment can visualize the 
microscopic origin of the JG mode. 

We found that the  unexpected collective motion 
of non-jumping particles in the JG time scale. 
The anomalous 𝑞-dependence of the JG 
relaxation time is due to the collective motion of 
the NJ particles. 
The thermally activated jumps cause the small 
motions and the stress relaxation around them. 
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Johari-Goldstein relaxation in metallic glasses

Some metallic glasses exhibit large secondary relaxation, which is considered to be 
Johari-Goldstein mode. 
It is related to brittle-ductile transition. 
String like correlation motions are observed in Johari-Goldstein relaxation. 

Y.-B. Yu, et al., Nat. Sci. Rev. 1, 429 (2014)

Y.-B. Yu, et al., Phys. Chem. Lett. 9, 5877 (2018)



Johari-Goldstein relaxation in Metallic glass

Embedded Atom Method potential
Y.Q. Cheng, et al., 
Phys. Rev. Lett. 102, 245501 (2009).
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Johari-Goldstein relaxation in metallic glass

Particle size: 
displacement in 10nsec 
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The behaviors observed in metallic glasses are essentially the same as those in 
an ionic glass. Universal picture of Johari-Goldstein relaxation mode?



Summary

We carried out molecular dynamics simulation of 
ionic glass CKN and metallic glass ZrCuAl. 
(Rotational and internal motions can be ignored.)

We reproduced the experimental results for CKN 
quantitively. 

We found that the  unexpected collective motion of 
non-jumping particles in the JG time scale in both 
systems. 

The thermally activated jumps cause the small 
motions and the stress relaxation around them. 

These similarity suggests the universal picture of 
our finding on the JG-relaxation mode.
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