Mechanics of plant root pullout from soil

(M. Kinoshita, T. Yamaguchi, in preparation.)

Department of Biomaterial Sciences Graduate School of Agricultural and Life Sciences The University of Tokyo YAMAGUCHI, Tetsuo, KINOSHITA, Mayu

Acknowledgment: This work was supported by JSPS KAKENHI project: Plant-Structure Optimization.

Background: Mechanical functions of plant roots

Functions of plant roots

- Adsorption of water and nutrients
- Storage of carbohydrates
- Support of plant's body
- Strengthening and Toughening of soil

Question:

How do plant roots support their bodies and toughen soil?

Landslide **Landslide Lodging of trees**

Plant-Soil interactions are one of the most important topics in

- Forest Science
- **Crop Science**
- **Geoscience**
- Civil Engineering

Background: Previous studies on root mechanics

Experiment

- Force-Displacement characteristics
- Geometrical factors
- Model root

X. Zhang et al., Plant Soil 456:289-305 (2020)

S. B. Mickovski et al., Eur. J. Soil Sci. **58**, 1471 (2007)

Mechanical/mathematical modeling

- Soil mechanics + Simple root geometry
- FEM/DEM simulations
- Root Bundle Model

However,

- Details on **structure-soil interactions**
- Effect of **geometry and elasticity of roots**
- **Theoretical features**

have been poorly understood.

Z. Mao, M. Yang, F. Bourrier, T. Fourcaud, Plant Soil **381**, 249 (2014)

Background: Granular physics viewpoint

Resistance force acting on granular matter Cyrindrical/Spherical object in steady motion T. A. Brzinski et al., Phys. Rev. Lett. 111, 168002 (2013)

2D photoelasticity experiment during pullout of a rod F. Okubo, H. Katsuragi, Modern Phys. Lett. (2020)

F. Okubo, H. Katsuragi, Modern Physics Letters B, (2020).

- To investigate the effects of root structure and elasticity on the pull-out behavior.
- To elucidate the mechanisms in a quantitative manner.

Approaches

- Pullout experiments with systematic parameter change
- Theoretical description

A "Digged-out" tree root (at Hokkaido University forest)

Pull-out experiment

- Root → **3D printed model**
- Fabricated with 3D printer (Form3, Formlabs) Material: Resin (E = 808 MPa), Rubber (E = 25.5 MPa)
- Diameter: D = 1, 1.5, 2, 3, 4, 5, 6, 7, 8 (mm)

• Soil → **Glass beads**

We mixed beads with three different sizes (0.2, 0.5, 1 mm) by 1:1:1 (in volume)

Pull-out behavior for our model and actual plants

After reaching F_{max} at small displacement, monotonic decrease was observed for both 3D-printed model and actual plant.

Results: Pull-out behavior

X-ray CT image

Resin→Keep its original shape

Rubber→Shrink

A factor to determine the maximum force

Bending rigidity (=
$$
EI = E \frac{\pi}{64} D^4
$$
)

E: Young's modulus

) I: 2nd moment of cross-section

D: Diameter

Description with theoretical models

To calculate the maximum force **step by step**

Step 1: Vertical root

Step 2: Horizontal root

Step 3: Branched root

Theory 1: Vertical root

Pullout of a smooth tap root \rightarrow **Friction**

- Lateral stress at depth z (Janssen's formula) $\sigma(z) = K \rho g \, z$ ρ : Density, g: Gravity constant K : Lateral pressure coefficient • Frictional stress $\tau(z) = \mu_{max} \sigma(z)$ μ_{max} : Maximum friction coefficient (cf. $F_{max} = \mu_{max} F_N$)
- Maximum force

$$
F_{tap} = \frac{K\rho g \pi \mu_{max}}{2} Dh^2 \quad F_{tap} \propto D, h^2
$$

 $F_{tap} \propto D$, h^2 is reasonable

Theory 2: Horizontal root

Tracking particle motions of glass beads during pull-out

Extracting particle motions around the force peak

Subtraction of two consecutive images

Displacement vector

Theory 2: Horizontal root

Theory 2: Horizontal root

Total force in the horizontal root

Theory 3: Branched root in the flexible and rigid limits

- Flexible limit
	- Friction force on the lateral roots

Pullout with pure sliding (No fracture of soil)

$$
F_{lat_fri} = \rho g \pi \mu_{max} D\left(\frac{1+K}{2} + \frac{1-K}{2} \cos 2\theta\right) \left(hl + \frac{\cos \theta}{2} l^2\right)
$$

Total pull-out force

 $F_{flexible} = F_{tap} + 4F_{lat_fri} = \rho g \pi \mu_{max} D \left[\frac{1}{2} Kh^2 + \{(1 + K) + (1 - K)\cos 2\theta\} (2hl + l^2 \cos \theta) \right]$

Theory 3: Branched root in the flexible and rigid limits

• Rigid limit
\n>Practice resistance from soil
\n
$$
F_{lat_res} = \rho g l \sin \theta \{ \alpha D \left(h + \frac{\cos \theta}{2} l \right) + \cos \phi \left(\sin \phi + \frac{1 - K_a}{2} \cos \phi \right) \left(h^2 + h l \cos \theta + \frac{1}{3} l^2 \cos \theta^2 \right) \}
$$

Total pull-out force \triangleright

$$
F_{stiff} = F_{tap} + 4(F_{lat_fri} \cos \theta + F_{lat_res})
$$

Theory 3: Comparison with experiment

Input Parameters

$$
\rho = 1.60 \text{ g/cm}^3, K\mu_{max} = 0.39, h = l = 5.0 \times 10^{-2} m, \quad \theta = \pi/3
$$

Predicted values for the samples of $D = 2mm$ (rubber) and $D = 9$ mm (resin)

> Deviation for the $D = 2$ mm rubber sample is considered to be the resistance for the neck part.

Pullout experiment in wet conditions

Volume fraction of water: 4%

Pushover experiment

• Cedar-like model (T/R ratio ≒3*) Branch Angle θ=15, 30, 45, 60, 75, 90 [°]

Pushover strength

Theory on Pushover

We assume that the stress at fracture is proportional to soil pressure.

$$
\sigma(z)=\sigma_{max}p(z)
$$

Total moment 8 ⁷ − 4 cos ⁵ + 4ℎ cos ⁴ + cos ³ − cos 2 3 M = 2 2 ² + 6ℎ cos cos + 3ℎ 3 2 ℎ cos 1 2 + ℎ + + ℎ + cos sin cos 2 6 2 2

Calculation result

Branch angle vs F_{max}

The theoretical curve exhibits an optimum angle $= 65^{\circ}$,

in reasonable agreement with experimental results.

The balance between depth and width is important.

Summary and Future plans

Summary

- We simplified the root structures and conducted pull-out experiments.
- We obtained a strong correlation between bending rigidity and maximum force.
- We successfully described the maximum forces in the flexible and rigid limits.

Future Plans

- Modeling and prediction of mechanical behavior for more realistic root structures and soil
- Engineering application: Soil-reinforcement of slopes using aboveground parts of a tree.

Thank you very much for your attention!

Ex. Rice in budding and growth

Root geometry and soil conditions change with time. ⇒Is it possible to predict pushover strength during budding and growth?