Avalanche criticality of rearrangements in aging glasses

Yuki Takaha, Hideyuki Mizuno, Atsushi Ikeda The University of Tokyo

Outline

・Introduction

- ・Intermittent dynamics in amorphous solids under shear
- ・Avalanche critical phenomena

・Model and Methods

- ・MD simulation
- ・Analysis from the viewpoint of PEL

・Results

- ・Displacement field of rearrangement events
- ・Probability distribution of rearrangement events

・Discussion

- ・Thermal EPM
- ・Marginal stability and critical behavior

Outline

・Introduction

- ・Intermittent dynamics in amorphous solids under shear
- ・Avalanche critical phenomena
- **・Model and Methods**
	- ・MD simulation
	- ・Analysis from the viewpoint of PEL
- **・Results**
	- ・Displacement field of rearrangement events
	- ・Probability distribution of rearrangement events
- **・Discussion**
	- ・Thermal EPM
	- ・Marginal stability and critical behavior

Intermittent particle rearrangements

Particle rearrangement Aging glass Stress drop under shear

- ・Elemental relaxation process
- Different from vibrational motion Thermal and quiescent Sheard athermal system Different from vibrational motion

Aging glass

Intermittent dynamics is ubiquitous in amorphous solids.

Avalanche critical phenomena under shear

Distribution of size of stress drop

- ・The power-law region
- Scaling relation of the distribution $R(S, L)$ $R(S, L) \sim L^{\beta} f(S/L^{d_f})$

4/27

・Finite size scaling

Avalanche critical phenomena

- ・Self-organized critical phenomena
- ・Earthquake
	- (Fisher et al., Phys. Rev. Lett. **78**, 4885(1997))
- ・Crackling noise in crumpled sheet

(Kramer and Lobkovsky, Phys. Rev. E 53, 1465(1996)) and ….

Oyama et al, Phys. Rev. E **104**, 015002(2021)

Elasticity & plasticity in sheared amorphous solids 5/27

Stress drop **Local plastic event and elastic field**

Oyama et al, Phys. Rev. E **104**, 015002(2021)

- ・Local regions in large motion
- ・Eshelby-like field

Intermittent events correspond to local plastic events interacting via elastic fields.

Elastoplastic model(EPM)

Bocquet et al, Phys. Rev. Lett. **103**, 036001(2009) Power-law distribution of stress drop

6/27

Proc. Natl. Acad. Sci. USA **111(40)**, 14382-14387(2014)

- ・Local plastic event causes stress redistribution around the site.
- ・The stress change sometimes triggers other local events. \Rightarrow rare system-spanning event.
- ・Avalanche critical phenomena

Elasticity and plasticity play an important role to form avalanche.

7/27

How about aging glass?

Aging glass

Are elasticity and plasticity important? Are there avalanche critical phenomena?

・Without shear, driven only by thermal noise

Particle rearrangements just after fast quench

Method

- ・Molecular dynamics(MD) simulation just after fast quench
- ・Analysis from the viewpoint of PEL

Results Displacement field Power-law distribution

We observe a critical phenomenon in a quiescent glass.

Outline

- **・Introduction**
	- ・Intermittent dynamics in amorphous solids under shear
	- ・Avalanche critical phenomena

・Model and Methods

- ・MD simulation
- ・Analysis from the viewpoint of PEL
- **・Results**
	- ・Displacement field of rearrangement events
	- ・Probability distribution of rearrangement events
- **・Discussion**
	- ・Thermal EPM
	- ・Marginal stability and critical behavior

Methods: Binary mixture

Model

- ・Binary in 2D
	- Effective diameter σ_A : $\sigma_B = 1: 1.4$. Equimolar system.

$$
\cdot v_{12}(r) = \epsilon \left(\frac{\overline{\sigma}}{r}\right)^{12}, \overline{\sigma} = (\sigma_1 + \sigma_2)/2
$$

• Unit: length σ_A , mass m, time $\sigma_A\sqrt{m/\epsilon}$, temperature ϵ/k_B

Methods: MD simulation

• Initial state: Inherent structure(nearest minima of PEL, IS) of liquids($T = 10$)

11/27

- Dynamics: Underdamped Langevin equation with Stoke drag $f_i^{\text{drag}} = -\dot{r}_i$.
	- \cdot Temperature: $T = 0.1$
	- Packing fraction: $\phi = 0.93$
	- Observation time: $0 \le t < 100$

Definition of particle rearrangements

Analysis from the viewpoint of PEL Trajectory of MD Optimization method Trajectory of ISs Duration: δt Rearrangement

・Intermittent event =Transition between ISs

12/27

 \cdot δt = 0.02 to separate into individual events

We track the IS-trajectory and detect the rearrangements.

[・]Ignore vibration

Definition of particle rearrangements

 $10[°]$

 10^{-13}

 10^{-16}

20

Clear intermittent events

$$
S = \sum (r_i^{IS}(t) - r_i^{IS}(t + \delta t))^{2}
$$

\n
$$
\cdot \delta t = 0.02 \text{ to separate into individual events}
$$

\n
$$
\begin{bmatrix}\n10^{2} \\
0 \\
10^{-4}\n\end{bmatrix}\n\begin{bmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\n0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\n0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\n0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\n0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0\n\end{bmatrix}
$$

13/27

We detect the rearrangements.

60

80

100

・Rearrangement events: > 10−6

 \overline{t}

40

・: Size of rearrangement event

Definition of particle rearrangements

Clear intermittent events

14/27

- ・Rearrangement events: > 10−6
- S: Size of rearrangement event

Outline

- **・Introduction**
	- ・Intermittent dynamics in amorphous solids under shear
	- ・Avalanche critical phenomena
- **・Model and Methods**
	- ・MD simulation
	- ・Analysis from the viewpoint of PEL
- **・Results**
	- ・Displacement field of rearrangement events
	- ・Probability distribution of rearrangement events
- **・Discussion**
	- ・Thermal EPM
	- ・Marginal stability and critical behavior

Displacement fields of particle rearrangements

Displacement fields between the ISs

 $S = 1$ $S = 10$ $S = 100$

 $N = 10000$

Under shear

16/27

Local events coupled via Eshelby-like fileds

Rearrangement = Local plastic events interacting via elastic field

Statistical property of particle rearrangements

17/27

 $P(S, N)$: Probability distribution of the size S with the number N of particle

Power-law region System-size dependence

Scaling analysis

Scaling assumption

 $P(S, N) \sim S^{-\tau} f(S/S_c) = S_c^{-\tau} g(S/S_c)$

- \cdot τ : Predicted exponent
- ・ : Cutoff size

We evaluate the cutoff
$$
S_c = \langle S^2 \rangle / \langle S \rangle
$$
.

There is a power-law relation between moments and cutoff.

$$
\cdot \tau \cong 1
$$

Collapse of the probability distribution

We check $P(S, N) \sim S_c^{-\tau} g(S/S_c)$. We plot $P(S)/S_c^{-\tau}$ against S/S_c with $\tau = 1$.

19/27

The distribution collapse on the same curve. The power-law region has the almost same exponent. ⇒**Particle rearrangements are critical phenomena.**

Outline

- **・Introduction**
	- ・Intermittent dynamics in amorphous solids under shear
	- ・Avalanche critical phenomena
- **・Model and Methods**
	- ・MD simulation
	- ・Analysis from the viewpoint of PEL
- **・Results**
	- ・Displacement field of rearrangement events
	- ・Probability distribution of rearrangement events

・Discussion

- ・Thermal EPM
- ・Marginal stability and critical behavior

Discussion: Why critical?

Why is our observation critical?

Examples of non-critical rearrangements in glasses.

- ・Aging after a finite waiting time (Masri et al, Phys. Rev. E **82**, 031503(2010))
	- ・No system-spanning event
- Stationary dynamics in glasses (Mizuno et al, *J. Chem. Phys*. 153, 154501 (2020))
	- ・Intermittent dynamics does not have system-size dependence.

What does cause the difference? ⇒**We discuss from the viewpoint of elastoplasticity.**

Discussion: Elastoplasticity

Local plastic event & elastic interaction

Quiescent glass as an elastoplastic material

- ・Local plastic event causes stress redistribution around the site.
- ・The stress change sometimes triggers other local events.
- ・**Without shear, driven only by thermal noise**

EPM will help us understand the criticality.

Discussion: Thermal EPM for supercooled liquids 23/27

Thermal EPM

(Ozawa and Biroli, Phys. Rev. Lett. **130**, 138201(2023))

- ・Driven by **only thermal noise**
- ・Elasticity facilitates dynamics.

Dynamical heterogeneity

High temperature Low temperature

Elasticity and plasticity can explain dynamical heterogeneity.

Discussion: Criticality in the thermal EPM

Stationary state with $T = 0^+$ in the thermal EPM

(Tahaei et al., Phys. Rev. X **13**, 031034(2023))

24/27

• Edge E_c of the distribution of activation energy E corresponds to the critical point. • The size of relaxed events on a timescale $\tau{\sim}e^{E_c/k_BT}$ is critical.

Discussion: Criticality in our setting

25/27

Our setting: Glass just after a fast quench

・Marginally stable(Karmaker et al., Phys. Rev. E **82**, 055103(2010),

Lin and Wyart, Phys. Rev. X **6**, 011005(2016))

 $\Rightarrow E_c = 0$ and corresponding timescale $\tau \sim e^{E_c/k_B T}$ is very small.

・ **The size of particle rearrangements is critical.**

Discussion: Criticality in previous studies

26/27

Our setting: Glass just after a fast quench

・Marginally stable(Karmaker et al., Phys. Rev. E **82**, 055103(2010),

Lin and Wyart, Phys. Rev. X **6**, 011005(2016))

 $\Rightarrow E_c = 0$ and corresponding timescale $\tau \sim e^{E_c/k_B T}$ is very small.

・ **The size of particle rearrangements is critical.**

Previous studies: With finite waiting time

 $E_c > 0$. The size of particle rearrangements is not critical.

Summary

We study the particle rearrangements in glasses just after quench.

The particle rearrangements are critical.

We can interpret the critical phenomena from the viewpoint of elastoplasticity.

Unclear point

- \cdot The system size dependence of S is not power-law.
- \cdot The value of the exponent τ is smaller than that observed in previous research.

Acknowledgement

・JSPS KAKENHI Grant Number 20H01868, 24H00192, 24KJ0589

Unclear point: N -dependence of $\langle S \rangle$

 $\langle S \rangle$ is not power-law dependent on N for large N.

We need more computational cost to refer the fully N -dependence.

28/27

29/27

Unclear point: exponent τ

The exponent $\tau = 1.2 \sim 1.5$ is usually observed.

- ・EPM under shear
- ・ thermal EPM
- ・AQS MD under shear

 $\tau = 1$ cases

・Elastic regime

(Shang et al., Proc. Natl. Acad. Sci. in USA **117(1)**, 86- 92(2019))

・EPM with a particular protocol (Jagla, Phys. Rev. E **92**, 042135(2015))

・Random energy model (Franz and Spigler, Phys. Rev. E **95**, 022139(2017))

The dependence of time duration δt

 $N = 324$ $N = 32400$

30/27

31/27

Evaluation of τ

Scaling with $\tau = 1.3$

At low temperature($T = 0.02$)

With shot time($0 \le t < 20$)

With different thermostat(Nosé-Hoover)

 $\tau = 1$

34/27