On constitutive models of dense suspensions Issues that need to be tackled

Ryohei Seto, Wenzhou Institute, UCAS

equilibrium Pe = 0

slow Peclet number (time scale of shear) Pe =

Brownian motion potential force

diffusion self assembly

equilibrium phases

Pe > 0 out-of-equilibrium

+ hydrodynamic forces + contact friction

shear-induced diffusion shear-induced microstructure

Rheology **Mechanics / migration**

Seto, Mari, Morris, and Denn PRL, JOR, PRE, and PNAS (2013–2015)

4

Seto, Mari, Morris, and Denn PRL, JOR, PRE, and PNAS (2013–2015)

Experimental data: Cwalina & Wagner 2014

Weak shear

Red dotts indicate contact contact is frictional

Strong shear

cf. Nakanishi et al. 2012

$$f = 0$$

"The dilatant fluid contains dispersed granular particles, which provides the system with **an internal degree of freedom** for a macroscopic description. Figure shows a schematic illustration for a relaxed state (a) and that for a jammed state (b)"

"the viscosity η is not constant but depends on the internal state variable f of the medium."

f = 1

- The purely hydrodynamic assumption does not hold.

We need to reflect them in constitutive models.

• (Granular) solid mechanics is embedded in incompressible fluids

review for constitutive models for fluids

boundary

boundary

stress field $\sigma(r, t)$

Constitutive model for the most common viscous fluid

Momentum balance

$$\rho \frac{Du}{Dt} = \nabla \cdot \boldsymbol{\sigma}$$
$$\frac{D}{Dt} \equiv \frac{\partial}{\partial t} + (\boldsymbol{u} \cdot \nabla)$$

Newtonian model "isotropic & no memory" $\boldsymbol{\sigma} = -p\mathbf{I} + \eta(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathsf{T}})$ $\eta: \text{viscosity} \qquad p: \text{pressure}$

Incompressibility $\nabla \cdot \boldsymbol{u} = 0$

10

Constitutive models for very dilute suspensions Very dilute suspensions $\phi < 0.05$

$$\boldsymbol{\sigma} = -p\mathbf{I} + \eta(\boldsymbol{\phi})(\nabla \boldsymbol{u} + \nabla$$

$$\eta(\phi) = \eta_0 (1 + 2.5\phi)$$

Newtonian, i.e., no memory and isotropic

The presence of particles enhances viscosity in Newtonian model

- 'u')
 - (Einstein 1906)

Constitutive models for semi-dilute suspensions

Some flow-rate and flow-type dependence can appear through C

C with general flow history is not given, so this is not complete constitutive model.

 $\eta(\phi) = \eta_0(1 + 2.5\phi + C\phi^2)$ (Batchelor 1972)

However, only some steady state values were given. $C = \begin{cases} 6.95 & \text{radial symmetry etc.} \\ 5 & \text{randome structure} \end{cases}$

viscoelastic fluids?

Constitutive models for viscoelastic fluids Momentum balance $\rho \frac{Du}{Dt} = \nabla \cdot \boldsymbol{\sigma}$ Incompressibility $\nabla \cdot \boldsymbol{u} = 0$

14

Microstructure tensors

Phan-Thien's (1995)

$$\boldsymbol{\sigma} = -p\mathbf{I} + \eta(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathsf{T}}) + \frac{1}{2}$$

$$F^{pq} = \left(\zeta_{sq}(h)nn + \zeta_{sh}(I - nn)\right)$$
$$\zeta_{sh} = 0$$

Constitutive models for particle suspensions ı n^{ij} Purely hydrodynamic force $\langle \boldsymbol{\sigma} \rangle = -\langle p \rangle \boldsymbol{\delta} + \eta (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathsf{T}}) + \mu(\phi) \left(\boldsymbol{\kappa} : \langle \boldsymbol{nnnn} \rangle + \frac{1}{2} \dot{\gamma} K \langle \boldsymbol{nn} \rangle \right)$

 $\mu(\phi) = 2a^2 N \zeta_{\rm sq}(h) / V$

Constitutive models for particle suspensions Time evolution

Phan-Thien's (1995)

$$\frac{d}{dt}Q = \nabla u \cdot Q + B(t)$$

$$\langle B \rangle = 0, \ \langle B(t + \Delta t)B(t) \rangle = B \exp(-\Delta t)$$

 $\frac{D}{Dt}\langle nn \rangle = \nabla u \cdot \langle nn \rangle + \langle nn \rangle \cdot \nabla u^{\mathsf{T}} - 2\mathbf{D} : \langle nnnn \rangle - \frac{3}{2}\dot{\gamma}K\left(\langle nn \rangle - \frac{1}{3}\mathbf{I}\right)$

This time evolution is rather simple.

Time γt

No direct contact

equation.

$$F^{ij}_{ ext{lub}} \sim -\frac{1}{h} (U^i - U^j) \cdot h$$

Jeffrey and Onishi (1984)

The hydrodynamic lubrication singularity is derived from the Stokes

nn

Force blance equation to predict trajectories and microstructure Jenkins, Seto, and La Ragione. JFM 2021

Hydrodynamic force + repulsive force (no contact force)

Force blance equation to predict trajectories and microstructure Jenkins, Seto, and La Ragione. JFM 2021 F_0 : repulsive strength

$$F_{\alpha}^{(BA)} = 6\pi\mu a K_{\alpha\beta}^{(BA)} v_{\beta}^{(BA)} - \frac{F_0}{s^{(BA)}} \hat{d}_{\alpha}^{(BA)} - 9.54\pi\mu a^2 (\hat{t}_{\beta} D_{\beta\xi} \hat{d}_{\xi}) \hat{t}_{\alpha}^{(BA)} + \pi\mu a^2 \left[\ln\left(\frac{a}{s^{(BA)}}\right) - 0.96 \right] \omega^{(A)} \hat{t}_{\alpha}^{(BA)} + \pi\mu a^2 \ln\left(\frac{a}{s^{(BA)}}\right) \omega^{(B)} \hat{t}_{\alpha}^{(BA)}, \quad (2.7)$$

where

$$\kappa_{\alpha\beta}^{(BA)} = \frac{1}{4} \frac{a}{s^{(BA)}} \hat{d}_{\alpha}^{(BA)} \hat{d}_{\beta}^{(BA)} + \left[\frac{1}{6} \ln\left(\frac{a}{s^{(BA)}}\right) + 0.64\right] \hat{t}_{a}^{(BA)} \hat{t}_{\beta}^{(BA)}$$
(2.8)

Force and torque balance to calculate trajectory

$$F_{\alpha}^{(BA)} + \sum_{\substack{m \neq B}}^{N^{(A)}} F_{\alpha}^{(mA)} = 0;$$

$$F_{\alpha}^{(AB)} + \sum_{\substack{m \neq A}}^{N^{(B)}} F_{\alpha}^{(mB)} = 0,$$

Particle simulation for extentional flows to compare with theory Jenkins, Seto, and La Ragione. JFM 2021

Reconstructuted trajectories from the averaged velocity field

Not good agreement indicating we need more effects from background neighobrs

22

Probability gistribution

Some efforts after knowing the importance of frictional contacts

DST model for steady states (WC model)

Wyart and Cates. Phys. Rev. Lett. (2014) cf. Nakanishi, Nagahiro, and Mitarai. Phys. Rev. E, (2012)

DST model for steady states (WC model) Wyart and Cates. Phys. Rev. Lett. (2014)

state variable
$$f \equiv \frac{Z_c}{Z_c + Z_{lub}}$$

 $\phi_J(f) = (1 - f)\phi_J^0 + f\phi_J^\mu$
 $\eta = \frac{\sigma}{\dot{\gamma}} = \left(1 - \frac{\phi}{\phi_J(f)}\right)^{-\lambda}$
 $f = 1$

cf. Nakanishi, Nagahiro, and Mitarai. Phys. Rev. E, (2012)

SPH implementation for the scalar model based on WC model

Angerman, Seto, Sandnes, and Ellero. Phys. Fluids, 2024 + draft in preparation **Also Baumgarten and Kamrin, PNAS 2019**

 $Df(\mathbf{r},t)$ **Microstructure evolution**

 α : microstructure diffusivity parameter

 $\dot{\gamma}(\mathbf{r},t) \equiv \sqrt{\mathbf{D}:\mathbf{D}/2}$: local shear rate

 $\hat{f}(\sigma)$: steady state value under shear stress σ

$$\phi_{\mathrm{J}}(f)$$
 :

$$f(\mathbf{r}, t) \longrightarrow$$

$$= k_{\rm f} \dot{\gamma}(\hat{f}(\sigma(\boldsymbol{r})) - f(\boldsymbol{r}, t)) + \alpha \nabla^2 f(\boldsymbol{r}, t)$$

local jamming point and local viscosity $\sigma = \left(1 - \frac{\phi}{\phi_{\rm J}(f)}\right)^{-\lambda}$ $= (1 - f)\phi_{\rm J}^0 + f\phi_{\rm J}^\mu$

SPH demo for simple shear

viscosity

cf. Nakanishi et al. 2012

(b) t = 50

(c) t = 53

(d) t = 55

Tensorial constitutive models for dense suspensions Gillissen, Ness, Peterson, Wilson, and Cates, Phys. Rev. Lett. (2019)

evolution of fabric tensor $A = \langle nn \rangle$

$$\partial_t A = \nabla u \cdot A + A \cdot \nabla u^{\mathsf{T}} - 2 \nabla u : \langle nn \rangle$$

convection

$$\boldsymbol{\sigma} = -p\boldsymbol{I} + 2\eta_0\boldsymbol{D} + \eta_0 \left(\right)$$

jamming coordinate $\xi \equiv \langle nn \rangle : D_c / |D_c|$

$$\underbrace{\bigcup}_{D} \left(= (\nabla u + \nabla u) \right)$$

(I still don't understand this decomposition and their effects in the model)

Do we really need $\langle nn \rangle$?

Constitutive model for shear jamming and fragility

Evolution of the deformation gradient tensor

$$\frac{\partial \mathbf{F}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{F} = (\nabla \mathbf{u}) \mathbf{F}$$

define $\mathbf{B} \equiv \mathbf{F} \mathbf{F}^{\mathsf{T}}$ and $\mathbf{L} \equiv \frac{1}{2} \log \mathbf{B}^{\mathsf{N}}$

Projection to the edge of neutral zone $\Pi(\mathbf{M}) \equiv \begin{cases} \mathbf{M} & \text{if } \|\mathbf{M}\| \leq r, \\ r\mathbf{M}/\|\mathbf{M}\| & \text{if } \|\mathbf{M}\| > r. \end{cases}$

 $\mathbf{S} = 2\eta \mathbf{D} + 2\kappa (\mathbf{L} - \Pi(\mathbf{L})),$

Free surface flows

Roll-wave instability due to DST negative slope Darbois Texier, Lhuissier, Forterre, and B. Metzger, Comm. Phys., 2020. free-surface perturbation h_1 $\frac{\partial h_1}{\partial \tilde{t}} + \tilde{c} \frac{\partial h_1}{\partial \tilde{x}} = \begin{bmatrix} A & \partial^2 h_1 \\ \frac{\partial^2 h_1}{\partial \tilde{x}^2} \end{bmatrix}$ $h = 1 + h_1$ **(a) (b)** Camera 1 Gate Camera 2 10^{2} $\sim 3 \text{ Hz}$ $\tau(Pa)$ 10^{1} Laser sheet 1 10^{0} Laser sheet 2 10 cm

10.1038/s42005-020-00500-4

10 cm

Beyond linear stability analysis?

from youtube

10 sec

Ridge instability due to normal-stress dilatancy Xiong, Angerman, Ellero, Sandnes, and Seto, 2024

Beyond linear stability analysis?

Public lecture by Mike Cates from youtube

Keep a close eye here.

Stretching induced jamming?

Summary

macroscopically correct.

Previously, we considered suspensions as viscous fluids with viscosity depending on shear induced microstructure.

It is still a challenge to incorporate the emerging solid structure due to stresses and constraints in continuum models.

We are still trying to figure out how to describe dense suspensions

