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Jamming transition

◼ A rigidity transition of soft athermal particles,
e.g., foams, emulsions, and granular materials,
happens at critical packing fraction, 𝜙𝑐

[1].

◼ Critical scaling near 𝜙𝑐 has long been explored
by numerical models of soft spheres/circles [2],
where the particles are allowed to overlap!
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Normal modes

◼ Small vibrations of the particles around
equilibrium positions are characterized by
eigen-frequencies, 𝜔.

◼ Vibrational density of states (VDOS) 𝐷 𝜔
exhibits a plateau in 𝜔 > 𝜔∗ above jamming,
where 𝜔∗ ∝ ∆𝑧  with excess coordination
number, ∆𝑧 [1-3], while 𝐷 𝜔 below jamming
shows an isolated special mode which
scales as 𝜔min ∝ ∆𝑧 1.6 [4-6].

◼ Linear elastic and viscoelastic responses
are governed by low eigen-frequencies [7, 8]

as, e.g., shear modulus, 𝐺 = 𝐺𝑎 − σ𝑛
𝑛 Ξ
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Motivation
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• The critical scaling, 𝐺 ∝ ∆𝜙 Τ1 2, has never been validated experimentally.
• Instead, a quasi-linear scaling, 𝐺 ∝ 𝜙∆𝜙𝜇 with 𝜇 ≈ 1, is favored [1, 2].

What is missing in simulations/theory:
• Poly-dispersity?
• Deformability of the particles?
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Preliminary results
◼ We have studied jamming of poly-dispersed

particles by MD simulations, where the size
distribution is 𝑃 𝑅 ∝ 𝑅−3 𝑅min ≤ 𝑅 ≤ 𝑅max ,
and examined effects of poly-dispersity by
changing the size-ratio, 𝜆 = Τ𝑅max 𝑅min.

◼ Not only structures, e.g., radial distribution
function, force distribution, and distribution
of coordination number, 𝑃 𝑧 , but also
macroscopic quantities, e.g., ∆𝑧, pressure 𝑝,
and elastic energy 𝐸, are influenced by 𝜆.
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Preliminary results

◼ 𝜙𝑐 increases with 𝜆!

◼ Vibrational properties, i.e., 𝐷 𝜔  and 𝜔∗ ∝ ∆𝑧, 
are insensitive to 𝜆.

◼ Scaling exponents, i.e., 𝑝 ∝ ∆𝑧2 and 𝐺 ∝ ∆𝑧,
are not affected by 𝜆.

◼ Discussion: size-dependent stiffness, 𝑘𝑖𝑗



◼ A model of deformable foams in 2D: (i) the
force law is derived from the Young-Laplace
equation and (ii) non-spherical shapes are
given by an analytical expression [1].

◼ Effective overlap between the particles 𝑖 and 𝑗,

i.e., 𝛿𝑖𝑗 = 𝑅𝑖 + 𝑅𝑗 − 𝒓𝑖 − 𝒓𝑗 , is formulated as

◼ The magnitude of contact force, 𝑓𝑖𝑗, is obtained

by solving the simultaneous linear equations.

Morse-Witten theory

• Line tension, 𝛾

• Geometrical factor, 𝑔 𝜃 ≡ 𝜋 − 𝜃 sin 𝜃 −
cos 𝜃

2
− 1

[1] D. Morse and T. Witten, EPL 22, 549 (1993).

𝑖

𝑗

𝑘

Δ𝜃𝑗𝑘

𝛿𝑖𝑗

𝑖

𝑗

𝑘

Δ𝜃𝑖𝑘

𝛿𝑗𝑖



Energy minimization

◼ Initial state is static packing of undeformed circles with 𝜙.

◼ We numerically solve the simultaneous linear equations
(to obtain contact forces, 𝑓𝑖𝑗) and integrate equations of

motion by the FIRE algorithm.

◼ The system is assumed to be static if every magnitude of

total force, 𝒇𝑖 = σ𝑗 𝒇𝑖𝑗 , drops below a threshold.

initial state (undeformed circles)

final state (deformable foams)

• Initial 𝜙 = 0.84 ~ 0.90
• 𝑁 = 32 particles (6.4 × 104 samples)
• 𝑁 = 128 particles (1.6 × 104 samples)

• Units; 𝑚, 𝜎0, and 𝑡0 ≡ Τ𝑚𝜎0 𝛾



Critical scaling

◼ At the onset of unjamming, mean effective overlap, 𝛿 , goes to

zero, i.e., 𝛿 =
1

𝑁𝑐
σ𝑖𝑗
′ 𝛿𝑖𝑗 → 0 . Note that mean overlap, ҧ𝛿 ∝ 𝜙 −

𝜙𝑐, of undeformed circles is equivalent to the distance from 𝜙𝑐.

◼ Numerical data indicate ∆𝑧 ∝ 𝛿 0.57, 𝐸 ∝ 𝛿 2.05, and 𝑝 ∝ 𝛿 1.01.
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Vibrational properties

◼ Dynamical matrix (Hessian), ℋ , can be
formulated as

◼ The VDOS 𝐷 𝜔 exhibits a plateau in 𝜔 > 𝜔∗,
where the crossover frequency scales as 
𝜔∗ ∝ ∆𝑧𝛼 with 𝛼 = 0.75 rather than 𝛼 = 1.

◼ Discussion: the shear modulus, 𝐺

∆𝐸 =
1

2
𝑓 𝛿 ≡

1

2
𝒖 ℋ 𝒖

• effective overlaps, ȁ ۧ𝛿 ≡ ⋯ , 𝛿𝑖𝑗, ⋯
T

• contact forces, ȁ ۧ𝑓 ≡ ⋯ , 𝑓𝑖𝑗 , ⋯
T

• displacements, ȁ ۧ𝒖 ≡ ⋯ , 𝑢𝑖 , ⋯
T



Summary

We have examined the effects of
• poly-dispersity
• deformability of the particles

on vibrational properties and critical scaling near jamming.

• The 𝐷 𝜔 and critical exponents for 𝜔∗, 𝑝, and 𝐺 are not
affected by the poly-dispersity, 𝜆.

• Jamming of deformable foams are successfully simulated
by the Morse-Witten model.

• The critical exponents for Δ𝑧, 𝐸, and 𝑝 are close to those
of undeformed circles.

• There is no band-gap in 𝐷 𝜔 but 𝜔∗ scales differently
from that of undeformed circles.

Deformable polygons by
J. D. Treado et al., Phys. Rev. Materials 5, 055605 (2021).
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