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Jamming of granular materials
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JammedUnjammed

Yield stress σY

‣ Jamming phase diagram

• Unjammed: Fluid-like state with flow (  or )  

• Jammed: Solid-like state without flow (  and )

ϕ < ϕJ σ > σY

ϕ > ϕJ σ < σY

Jammed 
(Solid-like)

Unjammed 
(Fluid-like)

 A. Liu & S. Nagel, Nature (1998)
‣Hourglass
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‣Homogeneous sheared systems with constant  and ϕ ·γ

Scaling laws near jamming

ϕ ϕ

σY ∝ (ϕ − ϕJ)

σ

P
/|

ϕ
−

ϕ J
|

·γ/ |ϕ − ϕJ |5/2

P = |ϕ − ϕJ |𝒫± ( ·γ/ |ϕ − ϕJ |5/2 )

Shear rate: ·γ

Otsuki, Hayakawa PRE (2009): Linear repulsive interaction
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P 0

Packing fraction ϕ

P0 ∝ (ϕ − ϕJ)

P0(ϕ) ≡ lim
·γ→0

P(ϕ, ·γ)
Yi
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d 
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ss
 σ

Y

ϕJ ϕJ

Packing fraction ϕ
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Critical behaviors similar to those for conventional phase transition

( )|ϕ − ϕJ | ≪ 1
( )|ϕ − ϕJ | ≪ 1

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

Increasing ϕ
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Jamming in inhomogeneous systems

T. Baker et al., J. Fluid Mech. (2022). T. S. Komatsu et al., PRL (2002).

‣ Plug region in chute ‣Static region in 
rotating drum

‣Static region in 
sand pile

We theoretically derive velocity profile and scaling laws 
for inhomogeneous flows.

J. Mellmann , Powder Technol. (2001).
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DEM and continuum equation

Linear repulsive force  
Tangential friction   
Coulomb law  

Friction coefficient 

Fn

Ft

|Ft | ≤ μpFn

μp
Gravity g

Ω

Discrete Element Method (DEM)
Position , Force ri Fij

m··ri = ∑
j

Fij

Flow between rough plates Flow in rotating drum

ρ(∂tu + u ⋅ ∇u) = − ∇p + ∇ ⋅ σ + K
Continuum equations for theoretical analysis

Velocity , Density , Pressure , Stress , Body force u ρ p σ K

Force f
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Constitutive equation for :  rheologyσ μ(I)

‣Simple shear ‣Generalized form

μ(I) = μs +
μ2 − μs

I0/I + 1

Bulk friction  

Inertia number  

Shear stress , Pressure , Shear rate  
Particle diameter , Particle density 

μ = σ/p

I = ·γd/ p/ρs

σ p ·γ

d ρs

Stress tensor  

Shear rate tensor  

,  

Viscosity 

σ = μ(I)p
·γ

| ·γ |
= η ·γ

·γ = ∇u + (∇u)T

μ(I) = μs +
μ2 − μs

I0/I + 1
I = | ·γ |d/ p/ρs

η =
μ(I)p
| ·γ |

Parameters ( ) can be estimated  
from DEM under simple shear.

μs, μ2, I0

Empirical law

P. Jop et al. Nature (2006)

Parameters: μs, μ2, I0

σ( ·γ) = μ(I( ·γ))p

GDR MiDi (2004)

μ

μs

DEM

Jammed

Unjammedμ
=

σ/
p

I = ·γd/ p/ρs

Consistent with scaling laws near jamming for : ·γ → 0 σY, p

(Yield stress fluids with )σY ∝ p
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‣Constant volume, periodic B.C along -directionx

Setup: 2D flow between rough parallel plates

Frictionless  grains 
Grain diameter:  
Distance between plates:  
Velocity  
Local packing fraction:   
Average packing fraction:  
External force per unit mass: 

N

d

H ≫ d

u(z)

ϕ(z)

ϕ0 ≥ ϕJ

f

‣Solid-like plug region with  appears.·γ = 0

Force f
Plug

* Constant , friction, 3D → Same scaling lawp

Flux Q

Rough plate

Rough plate
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Jammed ( ):  
Unjammed ( ): 

f < fc(ϕ0, H) Q = 0

f > fc(ϕ0, H) Q > 0

Jammed Unjammed

‣Jamming transition

Mass flux  and critical force Q fc

Critical behaviors for ?f ∼ fc(ϕ0, H), ϕ0 ∼ ϕJ

Mass flux:  
External force: 

Q

f

M
as
s 
flu

x 
Q

ϕ0 = 0.850

H/d = 400

External force f

Average packing fraction:  
Distance: 

ϕ0

H

Critical force fc

Critical force: fc(ϕ0, H)



Theoretical analysis
ρ(∂tu + u ⋅ ∇u) = − ∇p + ∇ ⋅ σ + ρf
Continuum equations

External force f

μ

μs
Jammed

Unjammedμ
=

σ/
p

I = ·γd/ p/ρs

Steady parallel flow 
Velocity  u = (u(z),0)

-rheologyμ(I)

Pr
es
su

re
 p

Shear rate ·γ

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

T. Hatano et al., (2007).
: constantB

p = Π ( ·γ, ϕ)
lim
·γ→0

Π( ·γ, ϕ) = P0(ϕ)

P0 ≃ B |ϕ − ϕJ |
(for )ϕ > ϕJ

Equation of state for  near jammingp

Q( f, ϕ0, H) =
μsϕ0 ρsP0(ϕ0)H2

4bd ( f
fc(ϕ0, H)

− 1)
2

fc(ϕ0, H) =
2μsP0(ϕ0)

ρsH
, P0(ϕ) = B |ϕ − ϕJ |

( )|ϕ − ϕJ | ≪ 1

Critical force Mass flux
Analytical results for   using perturbation theoryf ∼ fc(ϕ0, H), ϕ0 ∼ ϕJ

arXiv: 2403.00256 



Scaling laws for critical force fc
Jammed ( ):  
Unjammed ( ): 

f < fc Q = 0

f > fc Q > 0

‣Critical force ( ) |ϕ − ϕJ | ≪ 1

ϕ0

f c
Increasing H

  increases with .        decreases with H.fc ϕ0 fc

fc(ϕ0, H) =
2μsP0(ϕ0)

ρsH
=

2μsB |ϕ0 − ϕJ |
ρsH

ϕ0 − ϕJ

f cH

‣Scaling law: fcH = ℱ (ϕ0 − ϕJ)Open symbol:  
Closed symbol: 

H = 400d

H = 300d

M
as
s 
flu

x 
Q

External force f

Numerically verified



M
as
s 
flu

x 
Q

External force f

Scaling laws for mass flux Q

Q( f, ϕ0, H) =
μsϕ0 ρsP0(ϕ0)H2

4bd ( f
fc(ϕ0, H)

− 1)
2

fc(ϕ0, H) =
2μsP0(ϕ0)

ρsH
, P0(ϕ) = B |ϕ − ϕJ |

‣Theoretical results for f > fc

( )|ϕ − ϕJ | ≪ 1

Theoretical results 
ϕ0 → ϕJ, H → ∞

‣Critical scaling law
Q

H2 |ϕ0 − ϕJ |
= 𝒬 ( fH

|ϕ0 − ϕJ | )

Q
/ (H

2
| ϕ

0
−

ϕ J
| )

fH/ |ϕ0 − ϕJ |

Numerically verified

Open symbol:  
Closed symbol: 

H = 400d

H = 300d
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Angular velocity Ω

Diameter D
Flowing layer 

(Unjammed)

Static regime 
(Jammed)

Rotation

Gravity g

Setup: granular materials in rotating drum

Froude number: Fr = Ω2D/(2g)
‣ → steady flows10−4 < Fr < 10−2

Thickness h

D. J. Parker et al.(1997) :  , G. Felix et al. (2007) :  h ∼ const . h ∼ Ωα
‣Previous studies：layer thickness ????h(Ω)
‣ Flowing layer (parallel flow)   Static regime (rigid rotation)

DEM simulation
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Time evolution：  

-rheology: , , ,  

Incompressible condition： 　

ρ(∂tu + u ⋅ ∇u) = − ∇p + ∇ ⋅ σ + ρg

μ(I) σ = η ·γ η =
μ(I)p
| ·γ |

μ(I) = μs +
μ2 − μs

I0/I + 1
I =

| ·γ |d
p/ρs

∇ ⋅ u = 0

Simulation: 2D-CFD (Computational Fluid Dynamics)

Density , Pressure , Stress , Gravity ρ p σ g

‣ Free surface: VOF method 
‣ Wall boundary: BDI method

Newtonian fluids: D. Watanabe and S. Goto,(2022)

Gas layer

Granular layer
Two phase flow

Velocity profile (CFD)
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Depth z

Ve
lo
ci
ty
 u

(z
)

Open symbol: 2D-DEM 
Closed symbol: 2D-CFD

Rigid rotation−Ωz

‣ DEM and CFD results are quantitatively consistent.

Velocity  and thickness u(z) h

z

x

Velo
city 

 at u(z)
x = 0Ω

Diameter：D

Th
ic
kn

es
s 

h

Angular velocity Ω

Increasing D

‣Thickness  increases with , and has a slight dependence on .h D Ω

Thickness h

Flowing layer (unjammed)

‣ Flowing layer： ,  Thickness ：u(z) > 0 h u(z = h) ≃ 0
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Nondimensionalized continuum eq.
　 

 

, , , 

∇ ⋅ u = 0
ρ(∂tu + u ⋅ ∇u) = − ∇p + ∇ ⋅ σ + ρg

σ = η ·γ η =
μ(I)p
| ·γ |

μ(I) = μs +
μ2 − μs

I0/I + 1
I =

| ·γ |d
p/ρs

The continuum model 
reproduces DEM results.

  : normalized variable 
Diameter of drum ,  
Angular velocity ,  
Density 

˜
D

Ω
ρ

Steady flow 　 
 

, 

∇ ⋅ ũ = 0

ũ ⋅ ∇̃ũ = − ∇̃p̃ + ∇̃ ⋅ (η̃ ·̃γ) + (g/Ω2D) ez

η̃ =
μsp̃
| ·̃γ |

+
(μ2 − μs)p̃(d/D)

I0 ϕp̃ + | ·̃γ | (d/D)
·̃γ = ∇̃ũ + ( ∇̃ũ)T

Packing fraction ϕ

Scaled velocity , Scaled position ũ(r̃) r̃



Scaling law for velocity profile
  : normalized variable 
Diameter of drum ,  
Angular velocity ,  
Density , Gravity 

˜
D

Ω
ρ g

　 
 

, 

∇ ⋅ ũ = 0

ũ ⋅ ∇̃ũ = − ∇̃p̃ + ∇̃ ⋅ (η̃ ·̃γ) + (g/Ω2D) ez

η̃ =
μsp̃
| ·̃γ |

+
(μ2 − μs)p̃(d/D)

I0 ϕp̃ + | ·̃γ | (d/D)
·̃γ = ∇̃ũ + ( ∇̃ũ)T

 ũ = u/(ΩD) = V (r̃; Fr)

r̃ = r/D
Scaling law：u(z; D, Ω)

ΩD
= U ( z

D
; Fr): Velocity at u(z) x = 0

d/D < 0.006 ≪ 1
,  ∇ ⋅ ũ = 0 ũ ⋅ ∇̃ũ = − ∇̃p̃ + ∇̃ ⋅ ( μsp̃

| ·̃γ |
·̃γ) +

g
Ω2D

ez
Froude number ：Fr Fr−1 = 2g/Ω2D External parameter

Particle diameter d

Scaled velocity , Scaled position ũ(r̃) r̃
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Validity of scaling law

‣The scaling law is confirmed by simulations.

Froude number：Fr = Ω2D/(2g)

u/
(Ω

D
)

Scaled depth z/D

Scaling law：u(z; D, Ω)
ΩD

= U ( z
D

; Fr)
↑Ω

Depth z

Ve
lo
ci
ty
 u

(z
)

D = 150d
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Scaling law for thickness of flowing layer

Thickness ：h u(z = h) ≃ 0

h

Scaling law：u(z; D, Ω)
ΩD

= U ( z
D

; Fr)

Gravity g

Flowing layer

Static regime Froude number Fr = Ω2D/(2g)

Sc
al
ed

 th
ic
kn

es
s 

h/
D

‣ The scaling law for  is verified. 
‣  is proportional to  and slowly increases with .

h

h D Ω

cf.  long drum exp.  [D. J. Parker et al. (1997)]

 

 

h(D, Ω)
D

= ℋ (Fr)

ℋ(Fr) ≃ H̃(0) + FrH̃(1)

Fr = Ω2D/(2g)
Derived from conservation of flux 
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‣Topic: Flow of jammed granular materials 
‣Theoretical analysis: Continuum eq. with -rheology 

‣Result 1: Scaling law for mass flux in parallel flows. 
‣Result 2: Scaling law for flowing layer thickness  in 
rotating drums.

μ(I)

h

Summary

arXiv: 2403.00256 

arXiv: 2407.19466
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