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AP axis, fluid moves radially inwards towards the embryo, reaches a 
maximum speed of 0.1–0.2 mm s−1 lateral to the embryo surface (Fig. 2b), 
and eventually moves towards the bottom of the well (Fig. 1e). The radial 
in-flow generated by isolated embryos can be described as a Stokes-
let flow34 (Fig. 2b, blue curve), a solution of the Stokes equation that 
describes the generic fluid flow around an external force (Supplementary 
Section 3.2.2). This force is related to the negative buoyancy of embryos. 
Indeed, the buoyant weight force Fg = 1.7 ± 0.4 nN estimated from sedi-
mentation speeds of immobilized embryos34 (Supplementary Section 1.4)  
is close to the Stokeslet strength Fst = 2.6 ± 0.3 nN obtained from fitting 
radial in-plane flow fields (Fig. 1b and Supplementary Section 2.1.6).

The self-generated Stokeslet flow stabilizes the upright AP-axis orien-
tation of embryos below the fluid surface (Supplementary Section 2.1.6).  
In addition, it induces an effective long-ranged hydrodynamic 

attraction between embryos, facilitating the assembly of clusters. 
Similar effects have been observed previously for bacterial and 
algal microswimmers near rigid surfaces3,34. Once two embryos 
are close together, their intrinsic spinning motions lead to an addi-
tional exchange of hydrodynamic forces and torques (Fig. 2d). 
Similar to pairs of Volvox colonies near a rigid surface34,38, nearby 
starfish embryos orbit each other, and their spinning frequency 
decreases compared with that of a freely spinning embryo. The excess 
cilia-generated torque from slower-rotating embryos34 manifests 
itself in systematic azimuthal flow contributions (Fig. 2c). To con-
firm our understanding of these hydrodynamic interactions, we 
complemented the Stokeslet flow of each embryo with additional 
contributions that reflect the effects of hydrodynamic interactions 
(Supplementary Section 3.2.2 and Supplementary Fig. 5). Flow fields 
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Fig. 1 | Developing starfish embryos self-organize into living chiral crystals. 
a, Time sequence of still images showing crystal assembly and dissolution 
(Supplementary Video 1). t = 0 h corresponds to the onset of clustering. Scale 
bar, 1 mm. b, Embryo morphology (left) and flow fields (right) change with 
developmental time. Shape scale bar, 100 µm. Flow-field scale bar, 200 µm. See 
Supplementary Information for uncropped morphology images. c, Embryos 
assembled in a crystal perform a global collective rotation (Supplementary 

Video 2). Scale bar, 2 mm. d, Spinning embryos (yellow arrows) in the crystal 
form a hexagonal lattice, containing fivefold (purple) and sevenfold (orange) 
defects. Scale bar, 0.5 mm. e, Schematic of embryo dynamics and fluid 
flows from side view (left) and top view (right). Crystals of spinning embryos 
form near the air–water interface. Self-generated hydrodynamic flows lead to 
an effective attraction between surface-bound embryos. Blue arrows depict 
fluid flows, dark red arrows indicate rotations of groups of embryos.
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Living matter
(Starfish embryos)

Robotic metamaterial

(extracted from) the wave front when 2ε
p
du
dx is negative (positive),

whereby the system is constantly driven out-of-equilibrium.
This leads to waves with two unprecedented features, namely
spatial asymmetry at all frequencies and unidirectional
amplification.

Nonreciprocal robotic metamaterial. In order to create a system
with such effective nonreciprocal local interactions, a necessary
but not sufficient condition is to add external forces. Our strategy
for achieving such nonreciprocal interactions is to apply strain-
dependent forces at each site, i.e., forces that are proportional to
the strain in the neighboring springs22. These local forces inject—
linear or angular—momentum and work into the mechanical
degrees of freedom. To do so, we built a metamaterial made of ten
“robotic” building blocks (Fig. 2a) with rotational degrees of
freedom. Each robotic unit cell consists of a mechanical rotor
with a rotational moment of inertia J, of a local control system,
and is mechanically coupled to its neighbors via pre-stretched
elastic beams resulting in a torsional stiffness C (Fig. 2b, c). The
control system measures the rotor’s angular position θL, collects
that of its right neighbor θR, and applies an additional torque on
the left rotor τM= Cf(α)(θL− θR). The parameter α is a dimen-
sionless feedback parameter. The feedback gain f(α) plays a
similar role as the parameter ε in the model of Fig. 1, yet with a
subtle difference. In the experiment, the active force is applied
only on the right neighbor, whereas in the model, the active force
is applied on both left and right neighbors (Methods, Mass-and-
spring model with nonreciprocal springs). We calibrate the tor-
que vs. angle response between two unit cells and find, as
expected, that CL→R= C differs from CR→L= C(1− f(α))
(Fig. 2d), therefore breaking reciprocity. While such tunable
nonreciprocal response is not surprising—ultimately it is achieved
at the level of each unit cell’s microcontroller—the novelty of our
approach lies in coupling many such robotic nonreciprocal unit
cells together and making use of the fact that the bandwidth of

the electronic components is much larger than that of the
mechanical degrees of freedom. As a result of the interaction
between multiple robotic building blocks, unique nonreciprocal
wave phenomena emerge, as we will see in the following sections.

To test the predictions of the mass-and-spring model, we now
investigate experimentally and numerically the stationary
response of our ten-unit cells robotic metamaterial to harmonic
excitations on the left and on the right edges over a wide range of
input frequencies (Methods, Calibration and measurements). In
the reciprocal case α = 0 (Fig. 3a), we observe from experiments
that the amplitudes of oscillation of each unit cell either decay
exponentially (low frequencies) or oscillate (high frequencies)
from one unit cell to another. We model the robotic metamaterial
as 10 coupled oscillators interacting with each other via
nonreciprocal stiffnesses CL→R and CR→L. To do so, we take into
account additional effects such as the bending of the rubber bands
and the inherent damping of the oscillators and quantify them via
independent calibration (Methods, Calibration and measure-
ments). The model matches the observations very accurately
without any fit parameters until 3 Hz, above which the numerical
model is too simplistic to accurately capture internal vibrations of
the rubber bands (Methods, Numerical model of the robotic
metamaterial). For all actuation frequencies, we observe from the
model and the experiment that the responses to left and right
excitations is simply related to mirror symmetry, which
demonstrates that the metamaterial response is inherently
symmetrical. In contrast, in the nonreciprocal case α= 0.43
(Fig. 3b), we observe a strong asymmetry in the angular
displacement profiles. When excited from the right, the response
is more localized close to the excitation point and when excited
from the left, the response is more extended toward the right and
even increases for large frequencies. This asymmetry is further
quantified by the spatial decays of the profiles, which are opposite
in the reciprocal case α= 0 (Fig. 3c) and differ in the
nonreciprocal case α= 0.43 (Fig. 3d), regardless of the driving
frequency. Figure 3d therefore demonstrates the emergence of
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Fig. 2 Robotic metamaterial with nonreciprocal interactions. a Robotic metamaterial made of 10 unit cells mechanically connected by soft elastic beams (i).
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components allow to program a control loop characterized by the feedback parameter α (see main text for definition). d Rescaled torsional stiffnesses
CL→R/C (red) and CR→L/C (blue) as a function of the feedback parameter
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collective properties of
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many-body systems?
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AP axis, fluid moves radially inwards towards the embryo, reaches a 
maximum speed of 0.1–0.2 mm s−1 lateral to the embryo surface (Fig. 2b), 
and eventually moves towards the bottom of the well (Fig. 1e). The radial 
in-flow generated by isolated embryos can be described as a Stokes-
let flow34 (Fig. 2b, blue curve), a solution of the Stokes equation that 
describes the generic fluid flow around an external force (Supplementary 
Section 3.2.2). This force is related to the negative buoyancy of embryos. 
Indeed, the buoyant weight force Fg = 1.7 ± 0.4 nN estimated from sedi-
mentation speeds of immobilized embryos34 (Supplementary Section 1.4)  
is close to the Stokeslet strength Fst = 2.6 ± 0.3 nN obtained from fitting 
radial in-plane flow fields (Fig. 1b and Supplementary Section 2.1.6).

The self-generated Stokeslet flow stabilizes the upright AP-axis orien-
tation of embryos below the fluid surface (Supplementary Section 2.1.6).  
In addition, it induces an effective long-ranged hydrodynamic 

attraction between embryos, facilitating the assembly of clusters. 
Similar effects have been observed previously for bacterial and 
algal microswimmers near rigid surfaces3,34. Once two embryos 
are close together, their intrinsic spinning motions lead to an addi-
tional exchange of hydrodynamic forces and torques (Fig. 2d). 
Similar to pairs of Volvox colonies near a rigid surface34,38, nearby 
starfish embryos orbit each other, and their spinning frequency 
decreases compared with that of a freely spinning embryo. The excess 
cilia-generated torque from slower-rotating embryos34 manifests 
itself in systematic azimuthal flow contributions (Fig. 2c). To con-
firm our understanding of these hydrodynamic interactions, we 
complemented the Stokeslet flow of each embryo with additional 
contributions that reflect the effects of hydrodynamic interactions 
(Supplementary Section 3.2.2 and Supplementary Fig. 5). Flow fields 
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Fig. 1 | Developing starfish embryos self-organize into living chiral crystals. 
a, Time sequence of still images showing crystal assembly and dissolution 
(Supplementary Video 1). t = 0 h corresponds to the onset of clustering. Scale 
bar, 1 mm. b, Embryo morphology (left) and flow fields (right) change with 
developmental time. Shape scale bar, 100 µm. Flow-field scale bar, 200 µm. See 
Supplementary Information for uncropped morphology images. c, Embryos 
assembled in a crystal perform a global collective rotation (Supplementary 

Video 2). Scale bar, 2 mm. d, Spinning embryos (yellow arrows) in the crystal 
form a hexagonal lattice, containing fivefold (purple) and sevenfold (orange) 
defects. Scale bar, 0.5 mm. e, Schematic of embryo dynamics and fluid 
flows from side view (left) and top view (right). Crystals of spinning embryos 
form near the air–water interface. Self-generated hydrodynamic flows lead to 
an effective attraction between surface-bound embryos. Blue arrows depict 
fluid flows, dark red arrows indicate rotations of groups of embryos.
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displacement, which is sufficient to ensure linear momentum con-
servation, but not angular momentum conservation (see Methods). 
As a consequence, an odd-elastic solid can experience an internal 
torque density even when solid body rotations do not induce stress. 
For example, in the microscopic model shown in Fig. 1, compres-
sion and elongation result in microscopic torques, which then leads 
to the elastic modulus A in the continuum limit.

Given the appearance of additional elastic moduli, for example 
A and Ko

I
 in equation (2), a natural question is how to control their 

relative values by microscopic design. For example, are there micro-
scopic building blocks for odd elasticity that, in contrast to Fig. 1, 
conserve angular momentum? In the Supplementary Information, 
we show that such a unit must involve non-pairwise interactions. 
Extended Data Fig. 1a shows an example built from motorized 
hinges that exert angular tensions to widen or contract each angle of 
a honeycomb plaquette. Crucially, each motor is designed to exert 
an angular tension proportional to the angular strain of its counter-
clockwise neighbour only. This is captured by the equation

Ti ¼ "κδθi " κaδθi"1 ð4Þ

where Ti and δθi are, respectively, the angular tension and displace-
ment of the ith vertex, κ provides passive bond bending stiffness and 
κa provides the crucial non-conservative, non-reciprocal response. 
Like the model in Fig. 1, equation (4) does not follow from a poten-
tial because the active plaquette may be brought through a quasi-
static cycle that extracts energy, as shown in Extended Data Fig. 
1b. Moreover, linear momentum is conserved and the forces only 
depend on the relative positions of the particles. However, given 

that each angular motor, by definition, exerts equal and opposite 
torques on its two constituent edges, the total angular momentum is 
conserved, in contrast to the active bonds in Fig. 1. As a result, the 
modulus A, and any entry in the second row of the matrix in equa-
tion (2), must be zero for a material built out of these plaquettes. We 
note that the microscopic models in both Fig. 1 and Extended Data 
Fig. 1 will also give contributions to the antisymmetric parts of the 
viscosity tensor ηoijmn ¼ "ηomnij

I
 in a viscoelastic solid when δr and 

δθi in equations (1) and (4) are replaced by δ_r
I

 and δ _θi
I

, respectively 
(see Supplementary Information). Furthermore, both the micro-
scopic models are chiral. In the Supplementary Information, we 
show that 2D odd-elastic solids must be chiral provided that they 
are isotropic, but anisotropic ones need not be.

The concept of odd elasticity extends naturally to three dimen-
sions. In analogy to equation (2), a full classification of odd elasticity 
in 3D is obtained by decomposing the strain tensor using irreduc-
ible representations of SO(3) (see Supplementary Information). The 
elastic modulus tensor displays up to 36 moduli that are not present 
in standard elasticity because they cannot be derived from an elastic 
potential, and these moduli yield up to four independent elastic energy 
cycles. A 3D odd-elastic solid must necessarily be anisotropic33,34,  
and the elastic modulus tensor in 3D is always achiral, irrespective 
of odd elasticity. We note that odd elasticity cannot exist in solids 
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Unlike shear coupling in anisotropic passive solids, the induced stress is 
always rotated 45° counterclockwise relative to the applied strain. c, An 
odd-elastic material is subjected to a closed cycle in deformation space. 
First, a counterclockwise rotation is followed by a volumetric strain ϵV, 
inducing a torque density AϵV. Next, the object does work AϵVϵθ on its 
surrounding as it is rotated clockwise through an angle ϵθ, before being 
compressed to its original size. The total work done is A times the area 
enclosed in deformation space: ϵVϵθ. d, An analogous cycle involving only 
shear stress and shear strain.
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 and A!=!0 (and B, μ!>!0). When subject to uniaxial compression, 
such a solid responds by both net contraction (proportional to ν (blue)) 
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uniaxial compression, shown schematically. Net strain can be decomposed 
into compression and shear in two directions. The resulting boundary 
stresses (arrows) cancel pressure on the top and bottom surfaces and 
maintain no stress on the sides. Black arrows show the response in the 
absence of odd elasticity and red arrows show the stresses due to Ko

I
.  

c, Analytical calculations for the odd and Poisson’s ratios with numerical 
validation. Simulations are performed using the honeycomb lattice  
(see Supplementary Information).
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with rab ≠ rba, reduces to equation (1) by letting ua(x) = Aa(x)eikx + c.c., 
where k is a wavevector and the complex amplitude is decomposed as 
A v v≡ + ia a

x
a
y (Methods).

Let us start with two populations A and B, and parity not explicitly 
broken. When the interactions are reciprocal, we find (besides a disor-
dered phase) two static phases where vA and vB (red and blue arrows in 
Fig. 1g) are (anti)aligned in analogy with (anti)ferromagnetism. When 
the interactions are non-reciprocal, the coefficients in equation (1) 
become asymmetric (for example, A A≠ab ba) and a time-dependent 
chiral phase with no equilibrium analogue emerges between the static 
phases (Fig. 1g, h). In the chiral phase, parity is spontaneously broken: 
vA and vB rotate at a constant speed Ωss with a fixed relative angle, either 
clockwise or anticlockwise (see Supplementary Video 1 for a demon-
stration with programmable robots). Figure 1a–f illustrates the aligned–
chiral transition in synchronization, flocking and pattern formation. 
This transition also occurs in viscous fingering15,41 (Fig.  1e,  f ), 
liquid-crystal solidification42, lamellar eutectics growth43, overflowing 
fountains44, and other natural phenomena that can be modelled by 
amplitude equations with asymmetric couplings between different 
harmonics of the same field (Methods).

The chiral phase is caused by the frustration experienced by agents 
with opposite goals: agent A wants to align with agent B but not 
vice-versa. This dynamical frustration results in a chase and runaway 
motion of the order parameters va (where a = A, B). Crucially, a stable 
chiral phase hinges on a subtle interplay between noise and many-body 
effects. Consider the exactly solvable bipartite Kuramoto model in 
equation (2) with η(t) = 0 and identical frequencies within each species. 
This system can be mapped to the dynamics of only two agents 

(Supplementary Information section IX). Unless   JAB = − JBA exactly, 
agents A and B would eventually catch up with each other and reach 
alignment or anti-alignment (henceforth, (anti)alignment) (Supple-
mentary Information section VIII). However, frequency disorder or 
noise in equation (2) constantly resets the chiral motion of A/B pairs. 
The noise-activated motions of individual agents become macroscop-
ically correlated through their interactions: the chiral phase is stabi-
lized. We verified this by computing the standard deviations of the 
order parameters that decrease as N1/  with the number of agents N; 
see Extended Data Fig. 2b. In flocking too, noise enlarges the chiral 
phase region (Fig. 2b, c).

Contrast our many-body chiral phase with parity-breaking phenom-
ena occurring with only a few degrees of freedom, for instance, with  
two coupled laser ring resonators18,45 (Supplementary Information 
section XII). In the latter  case, the state of the system switches between 
clockwise and anticlockwise under the effect of noise45, destroying the 
chiral phase. This process also occurs in our systems for small N: it is 
captured by adding in equation (1) a hydrodynamic noise (Supplemen-
tary Information section X and Extended Data Fig. 2a). The average 
time τ between chirality flips follows an Arrhenius law, τ = τ0exp(∆/σ2), 
where ∆ is the height of the barrier between clockwise and anticlockwise 
states, σ is the standard deviation of the hydrodynamic noise, and τ0 is 
a microscopic constant. For large N, the central limit theorem suggests 
that σ2 ~ 1/N (where ~ indicates asymptotic behaviour; consistent with 
numerics in Supplementary Information sections VIII–X and Extended 
Data Fig. 2b) and τ ~ exp(N). The chiral phase is salvaged by many-body 
effects. In optics, this scenario could be realized in non-reciprocal 
photonic networks of many coupled lasers18,33,46–48.
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Fig. 1 | Exceptional transitions: examples and mechanism. Non-reciprocal 
interactions ( JAB ≠ JBA) between two species A and B (in blue and red) induce a 
phase transition from static alignment to a chiral motion that spontaneously 
breaks parity. a, b, Non-reciprocal synchronization. Robots (programmed as 
non-reciprocal spins) spontaneously rotate either clockwise or anticlockwise, 
despite no average natural frequency (ωm = 0 in equation (2)). (Methods, 
Supplementary Information sections IX,  XIV, Supplementary Video 1)  
c, d, Non-reciprocal flocking. Self-propelled particles run in circles despite the 
absence of external torques (Supplementary Information sections V–VII and 
Supplementary Video 3). e, f, Non-reciprocal pattern formation. A 
one-dimensional pattern starts travelling, either to the left or to the right 
(Methods). The figure represents an experimental observation of viscous 
fingering at an oil–air interface adapted with permission from ref. 15, 

copyrighted by the American Physical Society. g, Schematic bifurcation 
diagram of the exceptional transition showing the frequency of the steady 
state, Ωss. Between the static (anti)aligned phases with Ωss = 0, an intermediate 
chiral phase spontaneously breaks parity. Two equivalent steady states 
(clockwise and anticlockwise, corresponding to opposite values of Ωss) are 
present in this time-dependent phase, which can be seen as a manifestation of 
spontaneous PT-symmetry breaking. The chiral phase continuously 
interpolates between the antialigned and aligned phases, both through |Ωss| 
and through the angle between the order parameters vA and vB. h, The 
transition between (anti)aligned and chiral phases occurs through the 
coalescence of a damped (orange) and a Goldstone (green) mode at an 
exceptional point (EP, red circle). In the chiral phase, the growth rates are drawn 
in purple.
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We study a two-dimensional, nonreciprocal XY model, where each spin interacts only with its
nearest neighbours in a certain angle around its current orientation, in analogy to a vision cone
found in active systems. Using energetic arguments and Monte-Carlo simulations we demonstrate
the emergence of a long-range ordered phase. A necessary ingredient is a configuration-dependent
bond dilution entailed by the finite vision cones. Strikingly, defects propagate in a directional
manner, thereby breaking the parity and time-reversal symmetry of the spin dynamics. This is
detectable by a non-zero entropy production rate.

A growing number of papers demonstrates that nonre-
ciprocal (NR) interactions which break the actio=reactio
principle are the origin of intriguing physical phenomena
in nonequilibrium systems [1–9]. A prominent example
are travelling-wave phases in binary fluids, which can be
caused by NR coupling between the two fluid compo-
nents [2, 3]. These time-dependent phases break the par-
ity P, time T , and PT symmetry of the system, and their
emergence has been linked to the existence of underlying
exceptional points [1]. In solids and soft crystals it was
recently shown that NR interactions may introduce odd
elasticity [4, 5]. A common source of nonreciprocity in bi-
ological and artificial systems is perception within a finite
vision cone, which naturally leads to interactions that
are NR and orientation-dependent. For example, which
neighbours a bird in a flock reacts to depends on its cur-
rent orientation. The few studies in this area showed that
vision cone interactions can lead to the formation of new
self-organized patterns in motile active matter [10–13].

In this Letter, we study how NR vision cone interac-
tions a↵ect the behavior of many-body systems on a lat-
tice to gain deeper insights into the underlying physical
mechanisms. Indeed, lattice models have proven invalu-
able to study fundamental questions of statistical physics,
in particular, concerning the emergence of phases and
phase transitions, also of active matter [14, 15]. In
addition, lattice models have numerous applications in
physics, engineering, socioeconomics, and biology. Here,
we implement vision cone interactions into the XY model
with short-range coupling (Fig. 1), which allows us to
study the interplay of a continuous rotational dynam-
ics, alignment interactions and vision cones. We uncover
two intriguing phenomena. First, NR interactions can
induce a stable long-range ordered (LRO) phase. This
is in sharp contrast to the standard short-ranged XY
model, in which a LRO phase is forbidden by the Mermin-
Wagner theorem. Remarkably, LRO even arises for vi-
sion cones that are almost 360�. Second, the vision cone
interactions cause defects to propagate in a directional,

FIG. 1. Illustration of the model, here on a hexagonal lattice.
(a) Each spin interacts only with those nearest neighbours
lying in its vision cone of size ✓. (b) If the spin orientation �
lies in the EUR (6 grey shaded regions), the total number of
coupled neighbours is reduced by one. In (a,b) ✓ = 150�. (c)
Probability distributions P (�) in the LRO phase at T = 0.15.

parity-broken manner. This directional spin dynamics
also breaks the time-reversal symmetry, which we mea-
sure by the entropy production rate (EPR). Indeed, we
have recently shown that nonreciprocity generally causes
EPR > 0 [6]. Here, we find that the EPR has a maximum
close to the onset of the disordered phase. Using a NR
version of the classical XY model enables us to rational-
ize these main e↵ects of the vision cones by adapting a
language and toolbox well-known from equilibrium sta-
tistical mechanics, including spin wave excitation, energy
minimization, and bond percolation.

Model.— We consider a two-dimensional lattice of
spins Si 2 R2, i 2 {1, 2, ...., L2

}, whose orientations
�i 2 [0, 360�) can continuously rotate in the lattice plane.
All spins are connected to a heat bath at temperature T .
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(Received 24 October 1997)
We study the low-temperature behavior of the classical Heisenberg antiferromagnet with nearest

neighbor interactions on the pyrochlore lattice. Because of geometrical frustration, the ground state
of this model has an extensive number of degrees of freedom. We show, by analyzing the effects of
small fluctuations around the ground-state manifold, and from the results of Monte Carlo and molecular
dynamics simulations, that the system is disordered at all temperatures T and has a finite relaxation
time, which varies as T21 for small T. [S0031-9007(98)05655-5]

PACS numbers: 75.10.Hk, 75.40.Gb, 75.40.Mg

In recent years, geometrically frustrated antiferromag-
nets have been identified as a distinct class of materi-
als, separate both from unfrustrated antiferromagnets and
from conventional spin-glasses [1]. Most characteristi-
cally, they remain in the paramagnetic phase, down to a
freezing temperature TF , which is small on the scale set
by the interaction strength, as measured via the magnitude
of the Curie-Weiss constant QCW . This behavior appears
to be a consequence of their structures, with magnetic ions
arranged in corner-sharing frustrated units—triangles or
tetrahedra—favoring high ground-state degeneracy.
Compounds in this class include SrCr8Ga4O19 (SCGO)

[2], in which a proportion of the magnetic ions occupy the
sites of a kagomé lattice, and the oxide [3,4] and fluoride
[5,6] pyrochlores, in which the magnetic ions form
tetrahedra, as illustrated in Fig. 1. Magnetic correlations
in these materials, determined from neutron scattering
[2,3,5,6] and muon spin relaxation [4,7] measurements,
are short ranged, with fluctuations that slow down as T
is reduced towards TF [1]. An important step towards
a theory of geometrically frustrated antiferromagnets is
to understand the behavior of the classical Heisenberg
model defined with nearest neighbor interactions on the
appropriate lattices. This simplified description may be
sufficient in the paramagnetic phase, and is a natural
starting point for the treatment of various additional
features of real materials (anisotropy, disorder, dipolar
interactions, and quantum fluctuations) that might be
relevant, especially below TF . For the lattices concerned,
the Heisenberg antiferromagnet has ground states with
extensive numbers of degrees of freedom. Properties
in the temperature range T ø jQCW j are controlled
by small amplitude fluctuations around the ground-state
manifold: the free energy of fluctuations may select
specific ground states, a phenomenon known as order by
disorder [8], while the long-time dynamics results from
coupling between these fluctuations and the ground-state
coordinates. Dynamical correlations, in particular, are
potentially one of the most interesting aspects of these
systems, but have so far received only limited atten-
tion [9,10].

In this paper we analyze the low-temperature statisti-
cal mechanics and dynamics of the classical pyrochlore
Heisenberg antiferromagnet, and place our results in a
broader setting. Most importantly, we show that the sys-
tem is, as proposed in early work by Villain [11], an
example of a cooperative paramagnet or classical spin liq-
uid. It does not display order by disorder, and at small
T the spin autocorrelation function (with precessional dy-
namics) decays in time t as kSis0d ? Sistdl ≠ exps2cTtd,
where c is a constant. This behavior is in striking contrast
to that of the kagomé Heisenberg antiferromagnet, previ-
ously the best-studied example of geometric frustration, in
which fluctuations select coplanar spin configurations in
the limit T ! 0 [12]. Additionally, we find, in agreement
with Reimers [9], that the freezing transition observed ex-
perimentally in most pyrochlore antiferromagnets [13] is
absent from the Heisenberg model.
We take, as a general starting point, n-component clas-

sical spins, Si , with jSi j ≠ 1, arranged in q site, corner-
sharing units: the kagomé and pyrochlore lattices have
q ≠ 3 and q ≠ 4, respectively [14]. An antiferromag-
netic exchange interaction, of strength J, couples each

FIG. 1. The pyrochlore lattice.
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by the interaction strength, as measured via the magnitude
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arranged in corner-sharing frustrated units—triangles or
tetrahedra—favoring high ground-state degeneracy.
Compounds in this class include SrCr8Ga4O19 (SCGO)
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tetrahedra, as illustrated in Fig. 1. Magnetic correlations
in these materials, determined from neutron scattering
[2,3,5,6] and muon spin relaxation [4,7] measurements,
are short ranged, with fluctuations that slow down as T
is reduced towards TF [1]. An important step towards
a theory of geometrically frustrated antiferromagnets is
to understand the behavior of the classical Heisenberg
model defined with nearest neighbor interactions on the
appropriate lattices. This simplified description may be
sufficient in the paramagnetic phase, and is a natural
starting point for the treatment of various additional
features of real materials (anisotropy, disorder, dipolar
interactions, and quantum fluctuations) that might be
relevant, especially below TF . For the lattices concerned,
the Heisenberg antiferromagnet has ground states with
extensive numbers of degrees of freedom. Properties
in the temperature range T ø jQCW j are controlled
by small amplitude fluctuations around the ground-state
manifold: the free energy of fluctuations may select
specific ground states, a phenomenon known as order by
disorder [8], while the long-time dynamics results from
coupling between these fluctuations and the ground-state
coordinates. Dynamical correlations, in particular, are
potentially one of the most interesting aspects of these
systems, but have so far received only limited atten-
tion [9,10].

In this paper we analyze the low-temperature statisti-
cal mechanics and dynamics of the classical pyrochlore
Heisenberg antiferromagnet, and place our results in a
broader setting. Most importantly, we show that the sys-
tem is, as proposed in early work by Villain [11], an
example of a cooperative paramagnet or classical spin liq-
uid. It does not display order by disorder, and at small
T the spin autocorrelation function (with precessional dy-
namics) decays in time t as kSis0d ? Sistdl ≠ exps2cTtd,
where c is a constant. This behavior is in striking contrast
to that of the kagomé Heisenberg antiferromagnet, previ-
ously the best-studied example of geometric frustration, in
which fluctuations select coplanar spin configurations in
the limit T ! 0 [12]. Additionally, we find, in agreement
with Reimers [9], that the freezing transition observed ex-
perimentally in most pyrochlore antiferromagnets [13] is
absent from the Heisenberg model.
We take, as a general starting point, n-component clas-

sical spins, Si , with jSi j ≠ 1, arranged in q site, corner-
sharing units: the kagomé and pyrochlore lattices have
q ≠ 3 and q ≠ 4, respectively [14]. An antiferromag-
netic exchange interaction, of strength J, couples each

FIG. 1. The pyrochlore lattice.
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sites of a kagomé lattice, and the oxide [3,4] and fluoride
[5,6] pyrochlores, in which the magnetic ions form
tetrahedra, as illustrated in Fig. 1. Magnetic correlations
in these materials, determined from neutron scattering
[2,3,5,6] and muon spin relaxation [4,7] measurements,
are short ranged, with fluctuations that slow down as T
is reduced towards TF [1]. An important step towards
a theory of geometrically frustrated antiferromagnets is
to understand the behavior of the classical Heisenberg
model defined with nearest neighbor interactions on the
appropriate lattices. This simplified description may be
sufficient in the paramagnetic phase, and is a natural
starting point for the treatment of various additional
features of real materials (anisotropy, disorder, dipolar
interactions, and quantum fluctuations) that might be
relevant, especially below TF . For the lattices concerned,
the Heisenberg antiferromagnet has ground states with
extensive numbers of degrees of freedom. Properties
in the temperature range T ø jQCW j are controlled
by small amplitude fluctuations around the ground-state
manifold: the free energy of fluctuations may select
specific ground states, a phenomenon known as order by
disorder [8], while the long-time dynamics results from
coupling between these fluctuations and the ground-state
coordinates. Dynamical correlations, in particular, are
potentially one of the most interesting aspects of these
systems, but have so far received only limited atten-
tion [9,10].

In this paper we analyze the low-temperature statisti-
cal mechanics and dynamics of the classical pyrochlore
Heisenberg antiferromagnet, and place our results in a
broader setting. Most importantly, we show that the sys-
tem is, as proposed in early work by Villain [11], an
example of a cooperative paramagnet or classical spin liq-
uid. It does not display order by disorder, and at small
T the spin autocorrelation function (with precessional dy-
namics) decays in time t as kSis0d ? Sistdl ≠ exps2cTtd,
where c is a constant. This behavior is in striking contrast
to that of the kagomé Heisenberg antiferromagnet, previ-
ously the best-studied example of geometric frustration, in
which fluctuations select coplanar spin configurations in
the limit T ! 0 [12]. Additionally, we find, in agreement
with Reimers [9], that the freezing transition observed ex-
perimentally in most pyrochlore antiferromagnets [13] is
absent from the Heisenberg model.
We take, as a general starting point, n-component clas-

sical spins, Si , with jSi j ≠ 1, arranged in q site, corner-
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Dissipative XY spin dynamics
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Order-by-disorder phenomena
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Noise-induced non-reciprocal phase 
transition

𝑗*+ = 0.35
𝑗+* = −0.25

𝑗%$ > −𝑗$%

See also, 
Fruchart*, RH*, Littlewood, Vitelli, Nature 2021
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The last term of Eq. (A17) can be shown to vanish,

⇢
X

i

ri · ṙi = ⇢
X

ij

⇥
ri · fa

ij(|ri � rj |
⇤
= 0, (A18)

since
X

ij

ri · fa
ij(|ri � rj | =

X

ij

rj · fa
ji(|rj � ri|)

=
X

ij

rj · fa
ij(|ri � rj |)

= �
X

ij

ri · fa
ij(|ri � rj |).

(A19)

This proves the desired Liouville-type theorem

@⇢

@t
+

X

i

(ri⇢) · ṙi = 0, (A20)

for non-reciprocally interacting systems with anti-
symmetric coupling.

Appendix B: Order-by-disorder phenomena

1. All-to-all coupled model

We provide here the details of the analysis of order-
by-disorder phenomena (OBDP) occurring in both geo-
metrically and non-reciprocally frustrated systems. For
concreteness, we consider the dynamics of all-to-all cou-
pled XY-model grouped into a few communities a =
A,B,C, ..., following the Langevin equation,

✓̇ai = �
X

b

jab
Nb

NbX

j=1

sin
�
✓ai � ✓bj

�
+ ⌘ai , (B1)

where h⌘ai (t)i = 0,
⌦
⌘ai (t)⌘

b
j(t

0)
↵
= ��ab�ij�(t � t0). The

all-to-all coupled nature allows us to rewrite Eq. (B1) in
a single spin picture,

✓̇ai = �
X

b

jabrb sin(✓
a
i � �b) + ⌘ai , (B2)

by introducing the order parameter  a =
(1/Na)

PNa

i ei✓
a
i = raei�a .

As emphasized in the main text, when the inter-
community coupling is taken to be geometrically/non-
reciprocally frustrated, the order parameter dynamics
can take di↵erent orbits �(t) = (�A(t),�B(t), ...) depend-
ing on their initial condition in the absence of stochastic-
ity. We will show below that this “accidental degeneracy”
of orbits is generically lifted by the presence of noise.

To proceed, we consider the dynamics of fluctuations
�✓ai = ✓ai � �a caused by noise. Assuming weak noise

strength, we linearize the stochastic equation of motion
as

�✓̇ai ⇡ �
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jab cos(�a(t)� �b(t))�✓
a
i + ⌘ai . (B3)

As Eq. (B3) is linear, the probability distribution func-
tion ⇢ai (�✓

a
i ) can be computed analytically through a

standard approach of mapping the Langevin equation to
the Fokker-Planck equation [80] as [81, 82],

⇢ai (t, �✓
a
i ;�(t)) =
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with its width wa given by,
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when an initial condition is a perfectly magnetized state,
�✓ai (t = 0) = 0. Especially in the case where ��ab =
�a��b converges to a constant value (which occurs, e.g.,
in a geometrically frustrated system and two-community
perfectly non-reciprocal system), the steady-state distri-
bution has the width [80]

w2
a(t ! 1,�) =

�P
b jab cos��ab

. (B5)

Let us now write down the order parameter dynamics
that are a↵ected by the above fluctuations induced by
noise. From
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one obtains,
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that is governed by the renormalized couplings,
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which are, crucially, �-dependent. Here, the e↵ec-
tive noise for the macroscopic angle �a is given by
⌘̄a = 1/(raNa)

PNa

i=1 ⌘
i
a cos �✓
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i that
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t0), and hh(�✓ai )i�(t) =

R
d✓ai ⇢

a
i (t, �✓

a
i ;�(t))h(�✓
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the noise average. In the second line, we have as-
sumed that the system self-averages, i.e., hh(�✓ai )i�(t) =
(1/Na)

PNa

i=1 h(�✓
a
i (t)) and used the property ⇢ai (�✓

a
i ) =

⇢ai (��✓ai ). As one sees by comparing with the determin-
istic case (Eq. (6) in the main text), we find that the bare
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The last term of Eq. (A17) can be shown to vanish,
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This proves the desired Liouville-type theorem

@⇢

@t
+

X

i
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for non-reciprocally interacting systems with anti-
symmetric coupling.
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This proves the desired Liouville-type theorem
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for non-reciprocally interacting systems with anti-
symmetric coupling.
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Figure 2. Marginal orbits in perfectly non-reciprocal
three spin system. We set J12 = �J21 = 3, J23 = �J32 =
�1, J31 = �J13 = 2.

proof.), i.e.,

d⇢

dt
=

@⇢

@t
+

X

i

@⇢

@✓i
✓̇i = 0, (3)

in a similar manner to Liouville’s theorem of Hamilto-
nian systems. Note that a similar theorem holds for non-
reciprocally interacting Heisenberg models, oscillators
with phase-delayed interactions [54] (that well-describes
biased Josephson junctions arrays [55, 56] and micro-
scopic rotors [4]), and non-reciprocally interacting par-
ticles (that describes e.g., complex plasma [3] and chem-
ically [5, 6] and optically active colloidal matter [7, 8]),
as shown in Appendix A (see also Ref. [57] for a similar
relation known in the context of evolutionary game theo-
ries). The conservation of phase volume dV = ⇢

Q
i d✓i of

Eq. (3) means that the dynamics are dissipationless and

the sum of all Lyapunov exponents is zero
PN

i=1 �i = 0.
In the absence of chaos �i  0, this makes all Lyapunov
exponents vanish �i = 0 (Fig. 1(c4)), which, generi-
cally, implies the emergence of marginal orbits described
schematically in Fig. 1(c3). Which orbit the system actu-
ally takes depends on the initial condition, in an identical
situation to the geometrically frustrated case.

We interpret these marginal orbits as the emergence of
“accidental degeneracy” caused by non-reciprocal frus-
tration. This degeneracy is accidental, in the sense that
they do not originate from the global symmetry or topol-
ogy of the dynamical system (Eq. (1)), in direct analogy
to those of geometrical frustration. The di↵erence lies
both in its physical origin and the consequence: in the
non-reciprocal (geometrical) frustration case, the degen-
eracy comes from Liouville’s theorem (underconstrained
degrees of freedom [35, 38, 39]) and the resulting marginal
orbits are typically time-dependent (static).

Take a two-spin perfectly non-reciprocal system J12 =
�J21 = J� as the simplest example [11, 58]. One can
readily find an analytical solution to the center-of-mass
angle ⇥ = (✓1 + ✓2)/2 and the di↵erence �✓ = ✓1 � ✓2
for a given initial condition ✓i=1,2(t = 0) as

⇥(t) = �J�t sin[�✓(0)], �✓(t) = �✓(0). (4)

As expected, the system exhibits marginal periodic or-
bits, where the speed and direction of the drift of the
center-of-mass angle ⇥ are determined by the initial con-
dition of �✓ that stays constant. The numerical solution
of a three-spin perfectly non-reciprocal system is depicted
in Fig. 2 as another example, where we similarly find
marginal periodic orbits.
Accidental degeneracy is usually associated with fine-

tuning of parameters. Here, in non-reciprocally frus-
trated systems, the emergence of marginal orbits relies
on the fine-tuning of the coupling to be perfectly non-
reciprocal Jij = �Jji. Once the coupling strength devi-
ates from this limit, the marginal orbits would generically
turn into (un)stable orbits, corresponding to the ‘lifting’
of degeneracy. This situation is in parallel to the geomet-
rical frustration case where the degeneracy is contingent
on the coupling strength being identical Jij = J [35].
So far, we considered cases where all spins are per-

fectly non-reciprocally interacting Jij = �Jji, where we
have shown that Liouville-type theorem Eq. (3) holds in
such cases. This means that there is absolutely no dis-
sipation occurring in the system: any initial state will
exhibit a marginal orbit that conserves the phase volume
in this case. In some sense, this is similar to systems
with a constant energy E(✓) = const., where all states
are trivially in the ground state manifold. This stands
in contrast to generic geometrically frustrated systems,
where only a small subset of states reside in the ground
state manifold. In such systems, a typical initial state
would relax to a state that corresponds to a marginal
fixed point, which is in contrast to systems with constant
energy E(✓) = const. where no relaxation occur.
In what follows, we show that there is a class of non-

reciprocal systems where a generic initial state relaxes to
an orbit that is marginal, making the analogy to geomet-
rically frustrated systems even more direct. Namely, we
consider a system that is separated into communities that
interact non-reciprocally between di↵erent communities
but ferromagnetically within the same community,

✓̇ai =
X

b

X

j

Jab
ij sin

�
✓bj � ✓ai

�
. (5)

Here, a, b labels the community, and i, j labels the spins
in the community and the intra-community coupling is
ferromagnetic Jaa

ij > 0. In such a situation, the spins in
the intra-communities would eventually align ✓ai = �a to
give

�̇a =
X

b

jab sin(�b � �a), (6)

in the long time limit, which has an identical form
to Eq. (1) when the inter-community coupling jab =P

j J
ab
ij (a 6= b) is i-independent. Therefore, following the

same logic as before, the system would exhibit marginal
orbits with zero Lyapunov exponents in the perfectly
non-reciprocal inter-community coupling jab = �jba.
The di↵erence from the systems considered before is the

Marginal orbit (i.e. initial state dependent orbits) emerges 
when 𝑗*/ = −𝑗/*
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The last term of Eq. (A17) can be shown to vanish,
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This proves the desired Liouville-type theorem
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(ri⇢) · ṙi = 0, (A20)

for non-reciprocally interacting systems with anti-
symmetric coupling.

Appendix B: Order-by-disorder phenomena

1. All-to-all coupled model

We provide here the details of the analysis of order-
by-disorder phenomena (OBDP) occurring in both geo-
metrically and non-reciprocally frustrated systems. For
concreteness, we consider the dynamics of all-to-all cou-
pled XY-model grouped into a few communities a =
A,B,C, ..., following the Langevin equation,
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by introducing the order parameter  a =
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As emphasized in the main text, when the inter-
community coupling is taken to be geometrically/non-
reciprocally frustrated, the order parameter dynamics
can take di↵erent orbits �(t) = (�A(t),�B(t), ...) depend-
ing on their initial condition in the absence of stochastic-
ity. We will show below that this “accidental degeneracy”
of orbits is generically lifted by the presence of noise.

To proceed, we consider the dynamics of fluctuations
�✓ai = ✓ai � �a caused by noise. Assuming weak noise
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as
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Let us now write down the order parameter dynamics
that are a↵ected by the above fluctuations induced by
noise. From

 ̇a = (ṙa + rai�̇a)e
i�a =

i

Na

NaX

i=1

✓̇ai e
i✓a

i , (B6)

one obtains,

�̇a = �
X

b

jab
Na

NaX

i=1

rb
ra

sin(✓ai � �b) cos(✓
a
i � �a) + ⌘̄a

= �
X

b

j?ab(�(t)) sin(�a � �b) + ⌘̄a (B7)

that is governed by the renormalized couplings,

j?ab(�(t)) = jab
rb(�(t))

ra(�(t))

⌦
cos2 �✓ai

↵
�(t)

, (B8)
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This proves the desired Liouville-type theorem
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This proves the desired Liouville-type theorem
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for non-reciprocally interacting systems with anti-
symmetric coupling.
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This proves the desired Liouville-type theorem
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for non-reciprocally interacting systems with anti-
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reciprocally frustrated, the order parameter dynamics
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ity. We will show below that this “accidental degeneracy”
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�✓ai (t = 0) = 0. Especially in the case where ��ab =
�a��b converges to a constant value (which occurs, e.g.,
in a geometrically frustrated system and two-community
perfectly non-reciprocal system), the steady-state distri-
bution has the width [80]
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Let us now write down the order parameter dynamics
that are a↵ected by the above fluctuations induced by
noise. From
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which are, crucially, �-dependent. Here, the e↵ec-
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with renormalized coupling

Here, self-averaging ,
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-! ⋯ = ⋯ + is assumed.
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The last term of Eq. (A17) can be shown to vanish,
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= 0, (A18)
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(A19)

This proves the desired Liouville-type theorem

@⇢

@t
+
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i

(ri⇢) · ṙi = 0, (A20)

for non-reciprocally interacting systems with anti-
symmetric coupling.

Appendix B: Order-by-disorder phenomena

1. All-to-all coupled model
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"Accidental degeneracy” of orbits

※A similar theorem holds for non-reciprocally interacting particles and Heisenberg spins.


