00:00 (hh:mm)

Odd dynamics in living chiral crystals

Tzer Han Tan Assistant Professor of Physics UC San Diego

Emergent phenomena in living matter

Mitotic spindle (~1um)

Fielmich et. al. 2018 eLife

Bird flocks (~1 m)

Keller Lab 2014

Jukin media

Active matter as a unifying framework

Active matter: microscopic particles consume energy for organized motion + interactions \rightarrow macroscopic states

Biological active matter as active nematic liquid crystal

Cells as active nematics

Spontaneous flow & active turbulence

THT*, Amiri*, Barandiaran* et. al. (2024) PRX Life

Topological defects as organization centers of morphogenesis

Maroudas-Sacks et. al. 2020 Nat. Phys.; Guillamat et. al. 2022 Nat. Mat.; Hoffman et. al. 2022 Sci. Adv.

Biological active matter as active nematic liquid crystal

Cells as active nematics

Spontaneous flow & active turbulence

THT*, Amiri*, Barandiaran* et. al. (2024) PRX Life

Topological defects as organization centers of morphogenesis

Maroudas-Sacks et. al. 2020 Nat. Phys.; Guillamat et. al. 2022 Nat. Mat.; Hoffman et. al. 2022 Sci. Adv.

Cytoskeleton as active nematics

Keber et. al. Science 2014

Duclos et. al. Science 2020

Wensink et. al. 2012 PNAS

Chiral active matter with 'odd' properties

Chiral active matter: constituent particle inject both *energy* (broken time reversal symmetry) and angular momentum (broken chiral symmetry) at microscopic level

Brandenbourger et. al. arXiv 2021

Transverse response

Edge modes and currents

Souslov et. al. PRL 2019

Yamauchi et. al. arXiv 2020

Review: "Odd Viscosity and Odd Elasticity" Fruchart et. al. 2023, Annu. Rev. Condens. Matter Phys

Starfish embryos self-assemble into living chiral crystal

100um

Starfish embryos self-assemble into living chiral crystal

Starfish embryos self-assemble into living chiral crystal

Single embryo hydrodynamics

Pairwise embryo hydrodynamic

Minimal model of chiral crystal formation

Longitudinal Forces

Theory colloborator: Alexander Mietke (Dunkel Group, currently U. of Oxford)

Minimal model of chiral crystal formation

Odd elasticity and strain cycles

Scheibner et. al. 2020 Nature Physics

Odd elasticity and strain cycles

Scheibner et. al. 2020 Nature Physics

Odd elasticity and strain cycles

Can extract work from quasistatic cycle

- Odd elastic materials can exhibit odd elastic wave, even when system is overdamped
- Trajectory of wave in strain space traces out a cycle
- Emergence of self-sustaining elastic engine cycle (internal energy converted into mechanical work)

Scheibner et. al. 2020 Nature Physics

Vibrational modes of living chiral crystal

 $\mathbf{F}(r) = (-k\hat{\mathbf{r}} + k^{\mathrm{a}}\hat{\mathbf{\phi}}) \,\,\delta r$

С

Signatures of odd elasticity in strain cycles

Can we measure the odd elastic moduli?

Shear Angle α

- Crystal harbors defects like edge dislocations
- Defect strain field encodes information about material moduli.

Topological Defects in Solids with Odd Elasticity

Lara Braverman, Colin Scheibner, Bryan VanSaders, and Vincenzo Vitelli Phys. Rev. Lett. **127**, 268001 – Published 20 December 2021

Inferring odd moduli from defect strain field

Moduli from best fit

Modulus	Estimate	Standard Error
A/μ	7.7	0.61
K^o/μ	7.1	0.59

Moduli from model coarse-graining $A = \frac{\sqrt{3}}{2} \left(k_a + \frac{F_0^{\perp}}{r_0} \right) \approx 1.9 \,\mathrm{s}^{-1}$ $A, K^o > 0$ $K^o = \frac{\sqrt{3}}{4} \left(k_a - \frac{F_0^{\perp}}{r_0} \right) \approx 0.8 \,\mathrm{s}^{-1}.$

CCW cycles do work on the environment

How to excite the wave?

Defect dynamics \Leftrightarrow wave dynamics

Geometric frustration of the

Autonomous order-disorder transition in living chiral crystal

Autonomous order-disorder transition in living chiral crystal

Acknowledgement

Odd dynamics living chiral crystal

Junang Li

Peter Foster

Shreyas Gokhale

Odd dynamics of living chiral crystal Tan TH*, Mietke A*, Li J, Chen Y, Higinbotham H, Foster PJ, Gokhale S, Dunkel J and Fakhri N, Nature (2022).

Group members

Undergraduates

Kiet Tran Aidan Lim Yuxuan Bai