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Sampling

Consider a system with many degrees of freedom r

and with energy V(r)

Goal: sample pg(r) =e T




Sampling

This can sometimes be very hard.
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Protein folding
DeepMind

Machine Learning & Optimization
Amini et al., NIPS 2017



This can sometimes be very hard.

Disordered materials
Berthier & Biroli 2011

Sampling

a) normal liquid

Janssen 2018
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Hot questions (about cold liquids)

» Equilibrium liquid to glass phase transition: complete mean-field
theory with Kauzmann transition, and very strong but incomplete
numerical hints.

» Nature of equilibrium relaxation dynamics close to the experimental
Ty where tq ~ 102 s: cooperativity, facilitation, spatially heterogeneous
dynamics.

* Basic properties of the glassy state: transport, thermal excitations,
linear and non-linear defects, rheology, plasticy and failure.

* New physics revealed by the discovery of ultrastable glassy films:
melting, annealing, aging, excitations.

Attacking these problems numerically requires efficient methods to
equilibrate, sample, or prepare glasses with various degrees of
annealing.



The Langevin paradigm
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The Langevin paradigm

p(r,t) = pp(r) + e Tt $(r) + ...

but what if T.c1ax becomes very large

C. Cammarota



The Langevin paradigm

p(r,t) = pp(r) + e Tt $(r) + ...

but what if T.c1ax becomes very large

C. Cammarota

Trelax O Tmixing O Tfirst
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Equilibrium

is a dynamical concept

Statistical time reversibility of trajectories

aka Detailed Balance, Zero entropy production, etc.



What we don't want

dr

dt
(ns(t)n; (1)) = 6;0(t —t')

= —uVV(r)+ 2uln

Larger © means faster dynamics = trivial



Glassy dynamics

7. = density relaxation time

L] mixture

FS {q H t}

102 10" 100 10" 102 108 104 108
t

Debenedetti & Stillinger, Nature (2001)



Glassy dynamics

T, = density relaxation time
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What ‘s on the market

* Molecular Dynamics (MD) and local Monte Carlo (MC) capture physical
dynamics, but are then the slowest methods Tsamping ~ Ta.

* Non-local, cluster and collective Monte Carlo moves: apriori require a
great deal of physical understanding. Swap MC leads t0 Tsamping < Ta .

 Parallel tempering and population annealing techniques: equilibrium
variations of simulated annealing to climb barriers in complex landscapes.

 Random pinning/bonding.

* Machine learning assisted Monte Carlo techniques: learning MC moves,
learning Boltzmann distribution.



Optimal transport formulation

Start from p(x,t = 0) uniform

Find an evolution such that p(x,t — +00) = pp(x)
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Optimal transport formulation

Start from p(x,t = 0) uniform

Find an evolution such that p(x,t — +00) = pp(x)

while minimizing the relaxation time

Find an evolution, what does it mean?
Minimizing the relaxation time, what does it mean?
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PHYSICAL REVIEW X 12, 041028 (2022)

Thirty Milliseconds in the Life of a Supercooled Liquid

Camille Scalliet®,' Benjamin Guiselin ;> and Ludovic Berthier®™*"



Think out of equilibriuum

: The Annals of Applied Probability
The Annals of Applied Probability 2000. Vol. 10. No. 3. 726752
1993, Vol. 3, No. 3, 897-913 3 5 s

ACCELERATING GAUSSIAN DIFFUSIONS! ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER

i BY PERSI DIACONTS,! SUSAN HOLMES AND RADFORD M. NEAL?
By CHii-RuEy HwWANG,* SHU-YIN HWANG-MA AND SHUENN-JYI SHEU
Stanford University, Stanford University and INRA and University of Toronto

Academia Sinica, Soochow University and Academia Sinica . . .
We analyze the convergence to stationarity of a simple nonreversible

Let w(x) be a given probability density proportional to exp(—U(x)) Markov chain that serves as a model for several nonreversible Markov
in a high-dimensional Euclidean space R™. The diffusion dX(t)= chain sampling methods that are used in practice. Our theoretical and
—VUIX(1) dt + V2 dW(¢) is often used to sample from . Instead of numerical results show that nonreversibility can indeed lead to improve-

ments over the diffusive behavior of simple Markov chain sampling
schemes. The analysis uses both probabilistic techniques and an explicit
diagonalization.

—VU(x), we consider diffusions with smooth drift #(x) and having equi-

Lifting Markov Chains to Speed up Mixing

Fang Chen LészI6 Lovdsz * Igor Pak f
Department of Mathematics Department of Computer Science Department of Mathematics
Yale University Yale University Yale University
fchen@math.yale.edu lovasz@cs.yale.edu paki@math.yaie.edu

Simulation of quantum walks and fast mixing with classical
processes

Simon Apers, Alain Sarlette, and Francesco Ticozzi
Phys. Rev. A 98, 032115 — Published 20 September 2018



Think out of equilibriuum

PHYSICAL REVIEW E 80, 056704 (2009)

Event-chain Monte Carlo algorithms for hard-sphere systems

Etienne P. Bemard,"* Werner Krauth,]‘T and David B. Wilson>*
| CNRS-Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 03, France
2Micros0ff Research, One Microsoft Way, Redmond, Washington 98052, USA
(Received 19 March 2009; revised manuscript received 15 October 2009; published 18 November 2()09)

In this paper we present the event-chain algorithms, which are fast Markov-chain Monte Carlo methods for
hard spheres and related systems. In a single move of these rejection-free methods, an arbitrarily long chain of
particles is displaced, and long-range coherent motion can be induced. Numerical simulations show that
event-chain algorithms clearly outperform the conventional Metropolis method. Irreversible versions of the
algorithms, which violate detailed balance, improve the speed of the method even further. We also compare our
method with a recent implementations of the molecular-dynamics algorithm.

Irreversible Monte Carlo algorithms for efficient sampling

Konstantin S. Turitsyn**, Michael Chertkov®¢, Marija Vucelja®*

4 Center for Nonlinear Studies & Theoretical Division, LANL, Los Alamos, NM 87545, UsA
b [ andau Institute for Theoretical Physics, Moscow 142432, Russia
“ Department of Physics of Complex Systems, Weizmann [nstitute of Sciences, Rehovot 76100, [srael

Lifting—A nonreversible Markov chain Monte Carlo algorithm

Marija Vucelja®
Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York,
New York 10065 and Department of Physics, University of Virginia, Charlottesville, Virginia 22904

(Received 2 February 2015; accepted 11 August 2016)
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Think out of equilibriuum

A theorem

d
d_z = —uVV +1 ++/2u1'n

V. f-BVV.-f=0

then 7-]relaLX(f) < 7-relax(())



Think out of equilibriuum

dr
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Choose f = —AVYV, AT = —A



Think out of equilibriuum

—0 —0

Choose f = —AVYV, AT = —A



Trial and error

d
d—;' — VYV +f 4+ \/2uTn

a small of self-propelled particles



Trial and error

d
d—z — VYV 4 /2uTn

RTP, ABP, AOUP

Loss of (mathematical) control



Trust RTPs

d
o UVV £+ /2uT
dt

Choose f = vgu, ||ju]| =1

u = Runs and Tumbles with a fine-tuned rate

1

['(u—u') = Q—BUOVV - (u—u’) or 0 if negative
d

And even set = 0



Trust RTPs

dr
— — Upgu

dt

1
'u—u) = Q—BUOVV - (u—1u’) or 0 if negative
d

(the theorem is lost)



Boltzmann is safe

1
'u—u)= Q—ﬁvOVV - (u—u’) or 0 if negative
d

Oip(r,u,t) = —vgu - Vp

+/dd_1u’ T(u" — u)p(r,u’,t) —T'(u— u)p(r,u,t)]

Check:pgs(r,u) = pp(r)— is a stationary solution
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Harmonic potential

dx
= vou, u = x1

=
I'u — —u) = BugV'ub(uV')

1
Viz) = §kx2



Harmonic potential
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Harmonic potential/Langevin



Harmonic potential/Lifted

1
Viz) = 5]{272

i‘:”Uo,uzzzl

ok = V/Bue?VE (1.0034 + i3.209) o K/

Monthus, JSTAT (2021) Tﬁ—r;t x Vk



Phase transitions

Trelax = €7, z = 1 in mean-field

week ending

PRL 107, 155704 (2011) PHYSICAL REVIEW LETTERS 7 OCTOBER 2011

Two-Step Melting in Two Dimensions: First-Order Liquid-Hexatic Transition

Etienne P. Bernard® and Werner Krauth”

Many papers over the years by Krauth, Kapfer, Michel,
Hukushima Nishikawa and even Sasa



How about a potential barrier ?
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Glasses

Many particles, repulsive potential
ri(t), H=Y V(r;—r;)
i<

Control temperature or density.

— Vo Uy

dt



Glasses, in practice

For hard-spheres, Event Chain

Monte Carlo :

L

t + 3t
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What's the gain ?

2[3 1 1 1 1 1 1
o] a
o (a)
620- O © -
= o)
{j o
=15 F o -
N o
T
O 10 % -
>
=
L5 ~
ﬂ ] | 1 | | |

066 0.68 070 0.72 074 076 0.78  0.80

— Speedup about 20 wrt Metropolis MC in dense fluids

— Speedup decreases as density increases



Similar dynamical pathways
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— Speedup decreases as density increases



New algorithm

ldea: perform rejection-free, irreversible, collective moves in
diameter space, i.e. a collective swap.

L t + tmove

Like ECMC, it satisfies global balance and breaks detailed balance.



New algorithm

MMC

oo gdose
0% Y o dC

200 a6,
OOO (c) 6
a0V aeY,




New algorithm

Biased random walk
Directed motion in diameter space
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Acceleration ?
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Swap moves (diameter space) badly needed, cSwapECMC the
best.



Speedup
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Combined cSwapECMC gets the best of both algorithms with
speedup increasing to about 40 compared to swap at largest

density.



Yes, it survives N

]-2 1 1 1 1 1 ]
1.0 -
0.8 =
&=
= 0.6 =
@)
0.4 -
N= 1024 —— SwapECMC =—
02 k 2048 ——- cSwap ——
4006 sunee cSwapECMC ——
Swap ——

0.0 1 ] | ] W, TR - A
10v 10! 102 103 104 109 106 107
t / N tmove

Time correlations of the hexatic order parameter
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N=300 particles in a cubic box with periodic boundary conditions.



3d hard spheres
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Where does this take us ?

* Faster than the fastest.
* This Is just the beginning.
* Physics informed lifting.

* Physics informed learning.



Jamming competition

‘-'.f’in it

0.92 | I I | | I I
8 8 M3 § ¥ § 9w
0.90 -
&
o
2088 | - -
O
0
0.86 P n MMC O SwapECMC A -
5 o ™ ECMC O cSwap £ |
Swap ¢ ¢SwapECMC V
08—1 1 1 | 1 | L 1
0.74 076 078 080 082 084 086 088 0.90



Jamming competition

‘-'.f’in it

0.92 | I I | | I I
8 8 M3 § ¥ § 9w
0.90 -
&
o
2088 | - -
O
0
0.86 P n MMC O SwapECMC A -
5 o ™ ECMC O cSwap £ |
Swap ¢ ¢SwapECMC V
08—1 1 1 | 1 | L 1
0.74 076 078 080 082 084 086 088 0.90



	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65

