Persistent and extremely persistent dense active fluids

Grzegorz Szamel

Department of Chemistry, Colorado State University, Ft. Collins, CO 80523, USA

L. Berthier, E. Flenner & G. Szamel, *How active forces influence nonequilibrium glass transitions*, New J. Phys. **19**, 125006 (2017)

L. Berthier, E. Flenner & G. Szamel, *Perspective: Glassy dynamics in dense systems of active particles*, J. Chem. Phys. **150**, 200901 (2019)

G. Szamel & E. Flenner, *Perspective: Long-ranged velocity correlations in dense systems of self-propelled particles*, EPL **133**, 60002 (2021)

G. Szamel & E. Flenner, Extremely Persistent Dense Active Fluids, Soft Matter, 20, 5237 (2024)

Thanks to:

2 Glassy dynamics (moderately persistent active fluids)

Extremely persistent active fluids

Velocity correlations in systems of persistent active particles

Active Matter

Active matter: constituents "consume" energy and convert it into (systematic) motion

- Important feature: driving/breaking of detailed balance/breaking of time reversal symmetry at the level of individual particles.
- Result: single-particle and collective behavior very different from that exhibited by non-active (*i.e.* passive) systems:
 - Monothermal cyclic engine.
 - Motility-induced phase separation (MIPS)
 - liquid-gas-like phase separation in systems with purely repulsive interactions.
 - Non-trivial dynamics in extremely persistent active fluids. <=
 - Non-trivial equal-time correlations between velocities of different active articles. <=

Example: active colloidal particles

Janus colloids

One side of a spherical colloid covered by a catalyst; chemical reaction → self-propulsion.

Howse, ..., Golestanian, PRL 2007

- Short times: ballistic motion.
- Long times: diffusive motion.

• Dilute active colloids in gravity \rightarrow barometric distribution with effective temp. Palacci et al. PRL 2010.

Active Brownian Particles

ten Hagen et al. JCPM 2011

- Overdamped dynamics, no hydrodynamic interactions (dry active matter).
- Each particle is endowed with self-propulsion velocity of magnitude v_0 .
- The direction of the self-propulsion velocity diffuses freely;
 τ: persistence time of the direction.
- Equations of motion in two spatial dimensions:

$$\begin{split} \gamma_t \dot{\mathbf{r}}_i &= -\sum_j \nabla_i V(r_{ij}) + \gamma_t v_0 \mathbf{n}_i + \boldsymbol{\zeta}_i \quad \left\langle \boldsymbol{\zeta}_i(t) \boldsymbol{\zeta}_j(t') \right\rangle = 2 \boldsymbol{I} \gamma_t T \delta_{ij} \delta(t - t'), \\ \mathbf{n}_i &= (\cos(\varphi_i), \sin(\varphi_i)) \end{split}$$

$$\gamma_r \dot{\varphi}_i = \eta_i,$$
 $\langle \eta_i(t)\eta_j(t') \rangle = 2\gamma_r T \delta_{ij}\delta(t-t')$

 γ_t & γ_r - friction coefficients; rotational diff. coeff. $D_r = T/\gamma_r$; persistence time $\tau = D_r^{-1}$

• If thermal noise in the equation of motion for the position is neglected \rightarrow athermal ABP model; active temperature $T_a = \gamma v_0^2 \tau/2 = \gamma v_0^2/(2D_r)$.

Active Ornstein-Uhlenbeck particles

GS PRE 2014, Martin et al. PRE 2021

• Overdamped dynamics; self-propulsion force evolves according to the Ornstein-Uhlenbeck process.

$$\begin{split} \gamma \dot{\mathbf{r}}_{i} &= -\sum_{j} \nabla_{i} V(r_{ij}) + \mathbf{f}_{i} + \boldsymbol{\zeta}_{i} \qquad \left\langle \boldsymbol{\zeta}_{i}(t) \boldsymbol{\zeta}_{j}(t') \right\rangle = 2\gamma T \delta_{ij} \mathbf{I} \delta(t - t'), \\ \tau_{p} \dot{\mathbf{f}}_{i} &= -\mathbf{f}_{i} + \boldsymbol{\eta}_{i} \qquad \left\langle \boldsymbol{\eta}_{i}(t) \boldsymbol{\eta}_{j}(t') \right\rangle = 2\gamma T_{a} \delta_{ij} \mathbf{I} \delta(t - t') \end{split}$$

- γ friction coefficient; \mathbf{f}_n self-propulsion force; τ_p persistence time;
- η_i noise of the reservoir coupled to the self-propulsion; T_a noise strength
- In contrast to an ABP, for an AOUP both the direction and the magnitude of the self-propulsion evolve stochastically.
- Analogue of v_0 root-mean-squared self-propulsion $f = \sqrt{3T_a/\tau_p}$.
- Advantage: for a single particle many properties can be evaluated analytically.
- If the noise in the equation of motion for the position is neglected → athermal AOUP model.

Short persistence time limit

- In the short persistence time limit, τ_p → 0, and at constant active temperature T_a, an active system becomes equivalent to a passive system at a higher temperature.
- For example, an athermal system of AOUPs in the $\tau_p \rightarrow 0$ limit becomes equivalent to a thermal Brownian system at temperature $T = T_a$.
- A thermal system of AOUPs at temperature *T* in the τ_p → 0 limit becomes equivalent to a thermal Brownian system at temperature *T* + *T_a* = *T*_{eff}.

Active systems: very large parameter space compared to passive systems

- Passive system: temperature T and number density n or volume fraction ϕ .
- Active system: two more parameters that characterize the strength of the self propulsion and the persistence of the self-propulsion.
 - ABP: T, ϕ , self-propulsion velocity v_0 and persistence time τ .
 - athermal ABP: ϕ , self-propulsion velocity v_0 and persistence time τ .
 - athermal AOUP: ϕ , active temperature T_a and persistence time τ_p .
- Very different behavior can be observed while changing one parameter, depending on the path in the parameter space.
 - Increasing persistence time at constant T_a .
 - Increasing persistence time at constant root-mean-squared self-propulsion $f \propto \sqrt{T_a/\tau_p}$.

Outline

Introduction

2 Glassy dynamics (moderately persistent active fluids)

3 Extremely persistent active fluids

4 Velocity correlations in systems of persistent active particles

Glassy dynamics of cell motion

Angelini et al. PNAS 2011

 Confluent cell layer

Glassy dynamics:

- Dynamic heterogeneity
- Slowing down

AOUPs with purely repulsive interactions Berthier, Flenner & GS, NJP 19 125006

- 50:50 mixture of athermal active Ornstein-Uhlenbeck particles
- interactions: WCA truncation of the LJ potential

$$V_{\alpha\beta}(r) = \begin{cases} 4\epsilon \left(\left(\frac{\sigma_{\alpha\beta}}{r}\right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r}\right)^6 \right) & r \le 2^{1/6}\sigma_{\alpha\beta} \\ 0 & r > 2^{1/6}\sigma_{\alpha\beta} \\ \sigma_{AA} = 1.0; & \sigma_{AB} = 1.2; & \sigma_{BB} = 1.4 \end{cases}$$

• In the $\tau_p \to 0$ limit this system is equivalent to a thermal system $T = T_a$; for this thermal system in the $T \to 0$ limit we get a binary hard sphere mixture:

Glassy dynamics: dependence on ϕ at $T_a = 0.01$

$$S(q) = \frac{1}{N} \left\langle \sum_{i,j} e^{i\mathbf{k} \cdot (\mathbf{r}_i - \mathbf{r}_j)} \right\rangle \quad F_s(q;t) = \frac{1}{N} \left\langle \sum_i e^{i\mathbf{q} \cdot (\mathbf{r}_i(t) - \mathbf{r}_i(0))} \right\rangle$$

 Small changes of φ → small changes in the structure factor and big changes in the dynamics.

• Dynamic heterogeneity

Active glassy dynamics: non-trivial equal time velocity correlations

• Longitudinal velocity correlations:

$$\omega_{\parallel}(q) = \frac{1}{N\gamma^2} \left\langle \hat{\mathbf{q}} \cdot \sum_i (\mathbf{f}_i + \mathbf{F}_i) e^{-i\mathbf{q}\cdot\mathbf{r}_i} \; \hat{\mathbf{q}} \cdot \sum_l (\mathbf{f}_l + \mathbf{F}_l) e^{i\mathbf{q}\cdot\mathbf{r}_l} \right\rangle$$

For a thermal Brownian system (in the limit τ_p → 0, T_a = const.),velocities of different particles are uncorrelated & ω_{||}(q)τ_p = T.

Dependence of the dynamics on τ_p at const. T_a

Arrows indicate increasing persistence time.

- Short-time dynamics slows down with increasing τ_p .
- Long-time dynamics speeds up at $T_a = 0.01$ and slows down at $T_a = 1.0$.

Dependence of the apparent glass transition line on τ_p

Increasing persistence time at constant active temperature T_a fluidizes or glassifies the active system, depending on T_a .

Long-time dynamics correlates with steady state structure factor

Arrows indicate increasing persistence time.

Newer, alternative interpretation: dynamics is the fastest when cage size coincides with the persistence length Debets *et al.*, PRL **127**, 278002 (2021).

Summary

- At low active temperatures, increasing persistence time fluidizes the active system.
- At higher active temperatures and higher volume fractions, increasing persistence time makes the active system more glassy.
- Changes in the dynamics correlate with the changes in the peak value of the steady state structure factor.
- Note: an equilibrium system with the same pair correlations would be completely arrested.

Outline

Introduction

2 Glassy dynamics (moderately persistent active fluids)

3 Extremely persistent active fluids

4 Velocity correlations in systems of persistent active particles

Extreme active matter at high densities

а 3 Liquid 4 2 З £ Jamming 2 Plastic vielding Intermittent 1 **Dynamical arrest** 0 0 10² 10⁵ 10⁰ $10^3 \ 10^4$ 10^{1} $\tau_{\rm n}$

Intermittent dynamics at very large persistence times and intermediate active forces: exponential tails of "total force" distribution.

Mandal et al. Nat. Comm. 2020

Motion on the time scale of the persistence time

Mandal & Sollich, JPCM 33, 184001 (2021)

In the $\tau_p \to \infty$ limit the overlap function and the mean-squared displacement evolve on the time scale of the persistence time, $t' = t/\tau_p$.

Extremely persistent active fluids

GS & Flenner SM 20, 5237 (2024)

- Model system: the same as in the glassy dynamics study: athermal active Ornstein-Uhlenbeck particles with purely repulsive interactions.
- Goal: dynamics of active fluids in the $\tau_p \to \infty$ limit.
- To mimic Mandal *et al.* we keep the strength of active force $f = \sqrt{3T_a/\tau_p}$ constant and increase τ_p , *i.e.* we also increase $T_a \propto \tau_p$!

For a given f, structure depends very weakly on τ_p

- For a fixed value of self-propulsion force *f*, the structure of our active system depends only weakly on persistence time *τ_p*.
- Structure factor saturates at large persistence times.
- At all values of self-propulsion force that we studied, there is pronounced short-range stucture.
- The dynamics is ballistic up to persistence time; the large τ_p characteristics of the long-time dynamics depend as power laws on self-propulsion force.

Single-particle motion: mean squared velocity GS & Flenner SM 20, 5237 (2024)

- v^2 quantifies how well the self-propulsion force is balanced by the interparticle interactions.
- Short persistence times: $v^2 \approx f^2/\gamma^2$.
- Long persistence times: v^2 saturates at a smaller but finite value.

Single-particle motion: MSD & D

GS & Flenner SM 20, 5237 (2024)

- MSD is ballistic at short times (expected) and at intermediate times (surprising).
- Time-dependent velocity correlation function develops a plateau that reflects the second ballistic regime.

• At large
$$au_p$$
, $D \propto au_p$.

Single-particle motion: velocity distrib. & $F_s = \frac{1}{N} \left\langle \sum_n e^{i\mathbf{q} \cdot (\mathbf{r}_n(t) - \mathbf{r}_n(0))} \right\rangle$

Single-particle motion: scaling laws for $\tau_p \rightarrow \infty$ quantities

Large τ_p limits of the mean-squared velocity, D/τ_p and the F_s relaxation time depend on the strength of active forces as power laws.

Non-interacting particles: $v^2 \propto D/\tau_p \propto f^2$ & $1/\tau_s \propto f$.

Shear stress correlations and shear viscosity

 $\tau_{\rm p}$

 10^{6}

Rheology: scaling laws for $\tau_p \rightarrow \infty$ quantities

Large τ_p limits of the shear-stress correlation time and the viscosity depend on the strength of active forces as power laws.

Equilibrium FDT implies $\eta = T^{-1} \int_0^\infty \Sigma_{xy}(t) dt$

 black circles: η from direct simulations

• green:
$$T_a^{-1} \int_0^\infty \Sigma_{xy}(t) dt$$

 T_a - active temperature

• red:
$$T_E^{-1} \int_0^\infty \Sigma_{xy}(t) dt$$

$$T_E = \frac{\text{diffusion}}{\text{mobility}}$$

 T_E - Einstein effective temperature

• blue:
$$T_K^{-1} \int_0^\infty \Sigma_{xy}(t) dt$$

 $T_K = v^2$ - kinetic temperature

Summary

- Extremely persistent active fluids.
- Ballistic but non-trivial single-particle dynamics.
- Power-law dependence of dynamic quantities on the strength of active forces.
- Complete phase diagram?
- Theory for extremely persistent fluids?

Outline

Introduction

2 Glassy dynamics (moderately persistent active fluids)

3 Extremely persistent active fluids

4 Velocity correlations in systems of persistent active particles

Collective motion cells in a monolayer

Active slow cellular motion:

Non-trivial equal time velocity correlations

Velocity correlation functions appear naturally in theories for active dynamics

- Panels (a) and (b): non-trivial equal-time velocity correlations
- Panel (b): the range of velocity correlations increases with increasing persistence time (which quantifies departure from equilibrium).

 $T_{\rm eff}$ - effective/active temperature (one of possible quantitative measures of the strength of the activity)

Velocity correlations were found in active ordered and amorphous solids

Caprini, Marconi & Puglisi PRR 2020

Henkes et al. Nature Comm 2020

 Velocity correlations in active ordered solids (left figure) or in active amorphous solids (right figure) increase with increasing persistence time.

Our focus: velocity correlations in active fluids GS &

GS & Flenner EPL 2021

Goals:

- Characterize the long-range character of equal-time velocity correlations in active fluids.
- Explain theoretically the long-range velocity correlations.
- Understand their importance for the structure and the dynamics of active matter systems.
- Model: a system of athermal active Brownian particles, with purely repulsive interactions; polydisperse, with non-additive cross-diameters to avoid MISP and crystallization.

Qualitative picture \rightarrow snapshots of configurations

Arrows show orientations of the velocities; specific velocity directions are also color-coded.

Quantitative analysis: velocity correlation functions

• Fourier transform of the velocity field:

.

$$\mathbf{v}(\mathbf{q}) = \sum_{j} \dot{\mathbf{r}}_{j} e^{-i\mathbf{q}\cdot\mathbf{r}_{j}} \equiv \sum_{j} \left(\gamma^{-1} \sum_{l} \mathbf{F}_{jl} + v_{0} \mathbf{n}_{j}\right) e^{-i\mathbf{q}\cdot\mathbf{r}_{j}}$$

Longitudinal velocity correlation function

$$\omega_{\parallel}(q) = \frac{1}{N} \left\langle \left| \hat{\mathbf{q}} \cdot \mathbf{v}(\mathbf{q}) \right|^2 \right\rangle$$

appears in the theoretical analysis of the dynamics \rightarrow GS, Flenner & Berthier PRE 2015.

• The complementary, transverse velocity correlation function

$$\omega_{\perp}(q) = \frac{1}{N} \left\langle |\mathbf{v}(\mathbf{q}) - \hat{\mathbf{q}}(\hat{\mathbf{q}} \cdot \mathbf{v}(\mathbf{q}))|^2 \right\rangle$$

• Recall: in "passive" fluids equal-time velocity correlations are trivial but longitudinal and transverse velocity correlations exhibit different time-dependence.

Persistence time dependence of velocity correlations

dashed lines: Ornstein-Zernicke-like fits

At constant v_0 , the range of the longitudinal velocity correlation function increases with increasing persistence time τ , whereas the range of the transverse correlation function changes little.

Velocity correlation length

At constant v_0 , the longitudinal velocity correlation length increases approximately as $\sqrt{\tau}$, whereas the transverse velocity correlation length grows little and then saturates.

Long-range velocity correlations in active fluids!

Fluid-like local structure (g(r), left figure) and dynamics (mean-squared displacement, right figure) for all persistence times investigated.

Approximate theory

• We re-write the first term in the Fourier transform of the velocity field,

$$\gamma \mathbf{v}(\mathbf{q};t) = \sum_{j} \sum_{k \neq j} \mathbf{F}_{jk} e^{-i\mathbf{q}\cdot\mathbf{r}_{j}} + \gamma v_{0} \sum_{j} \mathbf{n}_{j} e^{-i\mathbf{q}\cdot\mathbf{r}_{j}(t)}$$

in terms of the interaction part of the pressure tensor,

$$\sum_{j} \sum_{k \neq j} \mathbf{F}_{jk} e^{-i\mathbf{q} \cdot \mathbf{r}_{j}} = i\mathbf{q} \cdot \sum_{j} \sum_{k \neq j} \mathbf{r}_{jk} \frac{\mathbf{r}_{jk}}{2r_{jk}} V'(r_{jk}) \left[\frac{e^{i\mathbf{q} \cdot \mathbf{r}_{jk}} - 1}{i\mathbf{q} \cdot \mathbf{r}_{jk}} \right] e^{-i\mathbf{q} \cdot \mathbf{r}_{j}} \equiv -i\mathbf{q} \cdot \mathbf{\Pi}_{v}(\mathbf{q}; t)$$

where $\mathbf{r}_{jk} = \mathbf{r}_j - \mathbf{r}_k$ and $\mathbf{\Pi}_v$ is the interaction (virial) part of the pressure tensor.

• Approximation:

$$\mathbf{\Pi}_{v}(\mathbf{r};t) \approx P_{v} + \mathbf{I}\left(\partial_{\rho}P_{v}\right)\left(\rho(\mathbf{r};t) - \rho\right) \quad \text{where} \quad P_{v} = \left\langle \mathbf{\Pi}_{v}(\mathbf{r};t) \right\rangle$$

and $\rho({\bf r};t)=\sum_i \delta({\bf r}-{\bf r}_i(t))$ is the microscopic (instantaneous) density.

• Time derivative of $\mathbf{v}(\mathbf{q};t)$ can now be expressed in terms of $\mathbf{v}(\mathbf{q};t)$ itself:

$$-\gamma i\omega \mathbf{v}(\mathbf{q};\omega) = -\gamma v_o i\omega \mathbf{n}(\mathbf{q};\omega) - \mathbf{q} \left(\partial_{\rho} P_v\right) \mathbf{q} \cdot \mathbf{v}(\mathbf{q};\omega)$$

Approximate theory: final formulae

• After some manipulations we get an approximate small-wavevector result:

$$\left\langle \left| \hat{\mathbf{q}} \cdot \mathbf{v}(\mathbf{q}) \right|^2 \right\rangle = rac{N v_0^2}{2} rac{1}{1 + q^2 \tau B_v / (\gamma
ho)}.$$

where $B_v = \rho \partial_{\rho} P_v$ is the virial bulk modulus of the active fluid.

• Longitudinal velocity correlation length:

$$\xi_{\parallel} = \sqrt{\tau B_v / (\gamma \rho)}.$$

Approximate theory: comparison with simulations

Missing piece: transverse correlations

Transverse velocity correlation length increases when monitored at constant T_a

solid symbols: simulations; open symbols: approximate theory

 Approximate theory for velocity correlations in active fluids is missing the transverse velocity correlations.

Earlier theoretical approaches

Caprini, Marconi & Puglisi PRR 2020

Assumptions:

- 2d hexagonally ordered crystal
- small displacements from lattice sites

Henkes et al. Nature Comm 2020

Assumptions:

- 2d elastic amorphous solid
- velocity correlations in terms of elastic moduli

Summary

- Equal-time velocity correlations are ubiquitous in solid-like and fluid-like active matter systems.
- The velocity correlations increase with increasing persistence of active motion.
- Correlations in solid-like systems can be explained by the combined effect of rigidity and persistent motion.
- Longitudinal correlations in fluid-like systems can be explained by the combined effect of compressibility (bulk modulus) and persistent motion.
- Are long-range equal-time velocity correlations a side effect of the activity or do they modify the structure and/or the dynamics of active systems?