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Introduction

Active Matter

Active matter: constituents “consume” energy and convert it into (systematic)
motion

Important feature: driving/breaking of detailed balance/breaking of time reversal
symmetry at the level of individual particles.

Result: single-particle and collective behavior very different from that exhibited by
non-active (i.e. passive) systems:

• Monothermal cyclic engine.

• Motility-induced phase separation (MIPS)
- liquid-gas-like phase separation in systems with purely repulsive interactions.

• Non-trivial dynamics in extremely persistent active fluids. ⇐

• Non-trivial equal-time correlations between velocities of different active articles. ⇐



Introduction

Example: active colloidal particles
Janus colloids Howse, ..., Golestanian, PRL 2007

One side of a spherical colloid covered by a
catalyst; chemical reaction → self-propulsion.
Short times: ballistic motion.
Long times: diffusive motion.

Dilute active colloids in gravity → barometric
distribution with effective temp. Palacci et al. PRL 2010.



Introduction Model system #1: Active Brownian Particles (ABPs)

Active Brownian Particles ten Hagen et al. JCPM 2011

Overdamped dynamics, no hydrodynamic interactions (dry active matter).
Each particle is endowed with self-propulsion velocity of magnitude v0.
The direction of the self-propulsion velocity diffuses freely;
τ : persistence time of the direction.
Equations of motion in two spatial dimensions:

γtṙi = −
∑

j

∇iV (rij) + γtv0ni + ζi

〈
ζi(t)ζj(t

′)
〉
= 2IγtTδijδ(t − t′),

ni = (cos(φi), sin(φi))

γrφ̇i = ηi,
〈
ηi(t)ηj(t

′)
〉
= 2γrTδijδ(t − t′)

γt & γr - friction coefficients; rotational diff. coeff. Dr =T/γr; persistence time τ =D−1
r

If thermal noise in the equation of motion for the position is neglected → athermal
ABP model; active temperature Ta = γv20τ/2 = γv20/(2Dr).



Introduction Model system #2: Active Ornstein-Uhlenbeck Particles (AOUPs)

Active Ornstein-Uhlenbeck particles GS PRE 2014, Martin et al. PRE 2021

Overdamped dynamics; self-propulsion force evolves according to the
Ornstein-Uhlenbeck process.

γṙi = −
∑

j

∇iV (rij) + fi + ζi

〈
ζi(t)ζj(t

′)
〉
= 2γTδijIδ(t − t′),

τpḟi = −fi + ηi

〈
ηi(t)ηj(t

′)
〉
= 2γTaδijIδ(t − t′)

γ - friction coefficient; fn - self-propulsion force; τp - persistence time;
ηi - noise of the reservoir coupled to the self-propulsion; Ta - noise strength

In contrast to an ABP, for an AOUP both the direction and the magnitude of the
self-propulsion evolve stochastically.
Analogue of v0 - root-mean-squared self-propulsion f =

√
3Ta/τp.

Advantage: for a single particle many properties can be evaluated analytically.

If the noise in the equation of motion for the position is neglected → athermal AOUP
model.



Introduction Model system #2: Active Ornstein-Uhlenbeck Particles (AOUPs)

Short persistence time limit

In the short persistence time limit, τp → 0, and at constant active temperature Ta, an
active system becomes equivalent to a passive system at a higher temperature.

For example, an athermal system of AOUPs in the τp → 0 limit becomes equivalent
to a thermal Brownian system at temperature T = Ta.

A thermal system of AOUPs at temperature T in the τp → 0 limit becomes equivalent
to a thermal Brownian system at temperature T + Ta = Teff.



Introduction Model system #2: Active Ornstein-Uhlenbeck Particles (AOUPs)

Active systems: very large parameter space compared to passive
systems

Passive system: temperature T and number density n or volume fraction ϕ.

Active system: two more parameters that characterize the strength of the self
propulsion and the persistence of the self-propulsion.

• ABP: T , ϕ, self-propulsion velocity v0 and persistence time τ .
• athermal ABP: ϕ, self-propulsion velocity v0 and persistence time τ .
• athermal AOUP: ϕ, active temperature Ta and persistence time τp.

Very different behavior can be observed while changing one parameter, depending
on the path in the parameter space.

• Increasing persistence time at constant Ta.
• Increasing persistence time at constant root-mean-squared self-propulsion f ∝

√
Ta/τp.



Glassy dynamics (moderately persistent active fluids)
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Glassy dynamics (moderately persistent active fluids) Active glassy dynamics was found in experiments

Glassy dynamics of cell motion Angelini et al. PNAS 2011

Confluent cell
layer

Glassy dynamics:

Dynamic
heterogeneity
Slowing down



Glassy dynamics (moderately persistent active fluids) Computer simulation study of active glassy dynamics

AOUPs with purely repulsive interactions Berthier, Flenner & GS, NJP 19 125006

50:50 mixture of athermal active Ornstein-Uhlenbeck particles

interactions: WCA truncation of the LJ potential

Vαβ(r) =

{
4ϵ

((σαβ

r

)12 −
(σαβ

r

)6)
r ≤ 21/6σαβ

0 r > 21/6σαβ

σAA = 1.0; σAB = 1.2; σBB = 1.4

In the τp → 0 limit this system is equivalent to a thermal system T = Ta;
for this thermal system in the T → 0 limit we get a binary hard sphere mixture:
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Glassy dynamics (moderately persistent active fluids) Computer simulation study of active glassy dynamics

Glassy dynamics: dependence on ϕ at Ta = 0.01

S(q) = 1
N

〈∑
i,j eik·(ri−rj

〉
Fs(q; t) =

1
N

〈∑
i eiq·(ri(t)−ri(0))

〉
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Glassy dynamics (moderately persistent active fluids) Computer simulation study of active glassy dynamics

Active glassy dynamics: non-trivial equal time velocity correlations

0 2 4 6 8 10
q

0.5

1

1.5

2

ω
||(q

)/
ω

||(∞
)

τ
p
 = 0.02

τ
p
 = 0.1

τ
p
 = 1.0

τ
p
 = 10

Τ
a
 = 0.01

φ = 0.582

Velocity of particle i: 1
γ (fi + Fi) ≡ 1

γ (fi +
∑

j Fij)

Longitudinal velocity correlations:

ω∥(q) =
1

Nγ2

〈
q̂ ·
∑

i(fi + Fi)e
−iq·ri q̂ ·

∑
l(fl + Fl)e

iq·rl
〉

For a thermal Brownian system (in the limit τp → 0, Ta=const.),velocities of different
particles are uncorrelated & ω∥(q)τp = T .



Glassy dynamics (moderately persistent active fluids) Computer simulation study of active glassy dynamics

Dependence of the dynamics on τp at const. Ta
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Arrows indicate increasing persistence time.

Short-time dynamics slows down with increasing τp.
Long-time dynamics speeds up at Ta = 0.01 and slows down at Ta = 1.0.



Glassy dynamics (moderately persistent active fluids) Computer simulation study of active glassy dynamics

Dependence of the apparent glass transition line on τp
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Glassy dynamics (moderately persistent active fluids) Computer simulation study of active glassy dynamics

Long-time dynamics correlates with steady state structure factor
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Arrows indicate increasing persistence time.

Newer, alternative interpretation: dynamics is the fastest when cage size coincides with
the persistence length Debets et al., PRL 127, 278002 (2021).



Glassy dynamics (moderately persistent active fluids) Summary

Summary

At low active temperatures, increasing persistence time fluidizes the active system.

At higher active temperatures and higher volume fractions, increasing persistence
time makes the active system more glassy.

Changes in the dynamics correlate with the changes in the peak value of the steady
state structure factor.

Note: an equilibrium system with the same pair correlations would be completely
arrested.
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Extremely persistent active fluids Motivation

Extreme active matter at high densities Mandal et al. Nat. Comm. 2020

Intermittent dynamics at very large persistence times
and intermediate active forces;
exponential tails of “total force” distribution.



Extremely persistent active fluids Motivation

Motion on the time scale of the persistence time
Mandal & Sollich, JPCM 33, 184001 (2021)

In the τp → ∞ limit the overlap function and the mean-squared displacement evolve on
the time scale of the persistence time, t′ = t/τp.



Extremely persistent active fluids Model system: athermal active Ornstein-Uhlenbeck particles

Extremely persistent active fluids GS & Flenner SM 20, 5237 (2024)

Model system: the same as in the glassy dynamics study: athermal active
Ornstein-Uhlenbeck particles with purely repulsive interactions.

Goal: dynamics of active fluids in the τp → ∞ limit.

To mimic Mandal et al. we keep the strength of active force f =
√
3Ta/τp constant

and increase τp, i.e. we also increase Ta ∝ τp!



Extremely persistent active fluids Simulation results

For a given f , structure depends very weakly on τp
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For a fixed value of self-propulsion force f , the structure of our active system
depends only weakly on persistence time τp.
Structure factor saturates at large persistence times.
At all values of self-propulsion force that we studied, there is pronounced short-range
stucture.

The dynamics is ballistic up to persistence time; the large τp characteristics of the
long-time dynamics depend as power laws on self-propulsion force.



Extremely persistent active fluids Simulation results

Single-particle motion: mean squared velocity GS & Flenner SM 20, 5237 (2024)

f = 54.8
f = 5.48
f = 0.548
f = 0.0548
f = 0.00548

v2

10−5

1

105

τp

10−4 10−2 1 102 104 106

v2 =
1

N
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ṙ2n
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Nγ2
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(
fn +

∑
m

Fnm

)2〉

v2 quantifies how well the self-propulsion force is balanced by the interparticle
interactions.
Short persistence times: v2 ≈ f2/γ2.
Long persistence times: v2 saturates at a smaller but finite value.



Extremely persistent active fluids Simulation results

Single-particle motion: MSD & D GS & Flenner SM 20, 5237 (2024)
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MSD is ballistic at short times (expected)
and at intermediate times (surprising).
Time-dependent velocity correlation function
develops a plateau that reflects the second
ballistic regime.
At large τp, D ∝ τp.



Extremely persistent active fluids Simulation results

Single-particle motion: velocity distrib. & Fs =
1
N

〈∑
n eiq·(rn(t)−rn(0))

〉
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Compressed exponential:

Fs(q; t) ∝ e−(t/τs)Γ , Γ > 1.



Extremely persistent active fluids Simulation results

Single-particle motion: scaling laws for τp → ∞ quantities
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Large τp limits of the mean-squared velocity, D/τp and the Fs relaxation time

depend on the strength of active forces as power laws.

Non-interacting particles: v2 ∝ D/τp ∝ f2 & 1/τs ∝ f .



Extremely persistent active fluids Simulation results

Shear stress correlations and shear viscosity
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Extremely persistent active fluids Simulation results

Rheology: scaling laws for τp → ∞ quantities
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Large τp limits of the shear-stress correlation time and the viscosity

depend on the strength of active forces as power laws.



Extremely persistent active fluids Simulation results

Equilibrium FDT implies η = T −1
∫∞
0 Σxy(t)dt

f = 0.0548
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Ta - active temperature
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Extremely persistent active fluids Summary

Summary

Extremely persistent active fluids.

Ballistic but non-trivial single-particle dynamics.

Power-law dependence of dynamic quantities on the strength of active forces.

Complete phase diagram?

Theory for extremely persistent fluids?
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Velocity correlations in systems of persistent active particles Introduction

Collective motion cells in a monolayer Garcia et al. PNAS 2015

Active slow cellular motion:

Non-trivial equal time
velocity correlations



Velocity correlations in systems of persistent active particles Introduction

Velocity correlation functions appear naturally in theories for
active dynamics
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Flenner, GS & Berthier, Soft Matter 2016

Panels (a) and (b): non-trivial
equal-time velocity
correlations
Panel (b): the range of velocity
correlations increases with
increasing persistence time
(which quantifies departure
from equilibrium).

Teff - effective/active temperature (one of
possible quantitative measures of the
strength of the activity)



Velocity correlations in systems of persistent active particles Introduction

Velocity correlations were found in active ordered and amorphous
solids

Caprini, Marconi & Puglisi PRR 2020 Henkes et al. Nature Comm 2020

Velocity correlations in active ordered solids (left figure) or in active amorphous solids
(right figure) increase with increasing persistence time.



Velocity correlations in systems of persistent active particles Velocity correlations in active fluids

Our focus: velocity correlations in active fluids GS & Flenner EPL 2021

Goals:

Characterize the long-range character of equal-time velocity correlations in
active fluids.

Explain theoretically the long-range velocity correlations.

Understand their importance for the structure and the dynamics of active matter
systems.

Model: a system of athermal active Brownian particles, with purely repulsive
interactions;
polydisperse, with non-additive cross-diameters to avoid MISP and crystallization.



Velocity correlations in systems of persistent active particles Simulation results

Qualitative picture → snapshots of configurations
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Arrows show orientations of the velocities; specific velocity directions are also color-coded.



Velocity correlations in systems of persistent active particles Simulation results

Quantitative analysis: velocity correlation functions
Fourier transform of the velocity field:
v(q) =

∑
j ṙje−iq·rj ≡

∑
j

(
γ−1

∑
l Fjl + v0nj

)
e−iq·rj .

Longitudinal velocity correlation function

ω∥(q) =
1

N

〈
|q̂ · v(q)|2

〉
appears in the theoretical analysis of the dynamics → GS, Flenner & Berthier PRE 2015.

The complementary, transverse velocity correlation function

ω⊥(q) =
1

N

〈
|v(q) − q̂(q̂ · v(q))|2

〉
.
Recall: in “passive” fluids equal-time velocity correlations are trivial but longitudinal
and transverse velocity correlations exhibit different time-dependence.



Velocity correlations in systems of persistent active particles Simulation results

Persistence time dependence of velocity correlations
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At constant v0, the range of the longitudinal velocity correlation function increases with
increasing persistence time τ , whereas the range of the transverse correlation function
changes little.



Velocity correlations in systems of persistent active particles Simulation results

Velocity correlation length
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At constant v0, the longitudinal velocity correlation length increases approximately as
√

τ ,
whereas the transverse velocity correlation length grows little and then saturates.



Velocity correlations in systems of persistent active particles Simulation results

Long-range velocity correlations in active fluids!
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Fluid-like local structure (g(r), left figure) and dynamics (mean-squared displacement,
right figure) for all persistence times investigated.



Velocity correlations in systems of persistent active particles Approximate theory

Approximate theory
We re-write the first term in the Fourier transform of the velocity field,

γv(q; t) =
∑

j

∑
k ̸=j Fjke−iq·rj + γv0

∑
j nje−iq·rj(t)

in terms of the interaction part of the pressure tensor,∑
j

∑
k ̸=j Fjke−iq·rj = iq ·

∑
j

∑
k ̸=j rjk

rjk

2rjk
V ′(rjk)

[
e

iq·rjk −1
iq·rjk

]
e−iq·rj ≡ −iq · Πv(q; t)

where rjk = rj − rk and Πv is the interaction (virial) part of the pressure tensor.

Approximation:

Πv(r; t) ≈ Pv + I (∂ρPv) (ρ(r; t) − ρ) where Pv = ⟨Πv(r; t)⟩

and ρ(r; t) =
∑

i δ(r − ri(t)) is the microscopic (instantaneous) density.

Time derivative of v(q; t) can now be expressed in terms of v(q; t) itself:

−γiωv(q;ω) = −γvoiωn(q;ω) − q (∂ρPv)q · v(q;ω)
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Approximate theory: final formulae

After some manipulations we get an approximate small-wavevector result:〈
|q̂ · v(q)|2

〉
=

Nv20
2

1

1 + q2τBv/(γρ)
.

where Bv = ρ∂ρPv is the virial bulk modulus of the active fluid.

Longitudinal velocity correlation length:

ξ∥ =
√

τBv/(γρ).
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Approximate theory: comparison with simulations
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Missing piece: transverse correlations
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Transverse velocity correlation length increases when monitored at
constant Ta
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ℓ
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solid symbols: simulations; open symbols: approximate theory

Approximate theory for velocity correlations in active fluids is missing the transverse
velocity correlations.
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Earlier theoretical approaches

Caprini, Marconi & Puglisi PRR 2020

Assumptions:
2d hexagonally ordered crystal
small displacements from lattice sites

Henkes et al. Nature Comm 2020

Assumptions:
2d elastic amorphous solid
velocity correlations in terms of elastic
moduli
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Summary

Equal-time velocity correlations are ubiquitous in solid-like and fluid-like active matter
systems.

The velocity correlations increase with increasing persistence of active motion.

Correlations in solid-like systems can be explained by the combined effect of rigidity
and persistent motion.
Longitudinal correlations in fluid-like systems can be explained by the combined
effect of compressibility (bulk modulus) and persistent motion.

Are long-range equal-time velocity correlations a side effect of the activity or do they
modify the structure and/or the dynamics of active systems?
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