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Swimming cell as living material
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2. Non'rECipr OCity & Odd EIaStiCity Kento Yasuda Cléme oreau Johann Herault
> motivation & Simple models (RIMS, Kyoto)  (CNRS/LS2N)  (IMT Atlantique)

» applications in biological swimmers
» physical interpretations

[Ishimoto, Moreau & Yasuda, Phys Rev E (2022); PRX Lite (2023)]

3. Emergence of non-reciprocity by mechanosensation
» elastohydrodynamics & coupled-oscillators

[Ishimoto, Moreau & Herault, arXiv: 2405.01802]



Microswimmers

Zero Reynolds number limit: Re — pUL <1
Stokes + force/torque free K
{ uNV?u=Vp F=M=0 no-slip boundary conditions: U = Ugsyrface
Vu=0 , usurface=U+ﬂxa3—>u’
Kinematic pr oblems deformation velocity

» solve the swimming dynamics with a given shape gait
» no information needed for the material

Elastohydrodynamics

» solve the swimming dynamics together with the shape gait (shape gait is unknown)
> to specity the shape gait, we need constitutive relation for material response



Non-reciprocity in microswimming

Purcell’s scallop theorem [purcel, AmJ Phys (1977); Ishimoto & Yamada, SIAM J Appl Math (2012)]

» Microswimming requires non-reciprocal deformation (non-time-reversal)
> a simple model for non-reciprocal swimmer with two-hinges is called the Purcell swimmer

(2)

3)




Kinematic microswimming formula

Gauge field theory for microswimming
» analogy with particle field theory [Shapere & Wilczek, ] Fluid Mech (1987)]

position+orientation

» periodic swimming beat is given by a loop in shape space A
------- <“"-"-""“~~\\
position + orientation for 2D swimming "::1‘
. . . displacement!
R_(Rn x) R = RA 0 -6 .
“\o 1/ A=A,e, A=|06 0 9
0 0 O

t
R(t) = R(0)Pexp U A(t’)dt’]
0

a(t) : : :

= R(0)Pexp [ j A (a)d aa] averaged velocity for a small-amplitude swimmer
a(0)

= line integral in shape space

A ,: gauge potential

— 1 .
A= E Fa 5 d (1’3 F,p: curvature of gauge field (field strength)



Elastohydrodynamic miroswimming

> flagellum as an actuated elastic rod
» Kirchhoff rod + Stokes equation

oF

hyd  — =
/ ds
M 0X .
mhvd 4 J + J xF = mnt o = gL\ __ viscous drag time
ds ds P= Ta, " elastic bending time

m"(s,t) = A;sin(kx — wt) D* + Aycos(kx —wt)D? “ [ T 7 T
40 | Sp =95 B; ]

flagellum

driving force is needed for propulsion ol
> 0 it

[Ishimoto & Gatfney, IAM ] Appl Math (2018)] 20y

[Walker, Ishimoto, Gadélha & Gaffney, ] Fluid Mech (2019)] 40 |

[Walker, Ishimoto & Gaffney, Phys Rev Fluids (2020)]
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General descriptions of active soft matter?

Beyond the kinematic problem

> Shape is determined by fluid-structure interaction »> general constitutive relation?
» material constitutive relation is needed > material response w/o energy conservation?

Swimming = Fluid+ Elasticity + Internal actuation

unified description?

» Swimming cell as a non-equilibrium state of matter?

NAW , )

e \§7 @ Z

&y energy injection R\ J! energy dissipation
from molecular scales &‘ L é in the viscous fluid

swimming (deformation + motility)

>




Odd elasticity

Linear elasticity: collection of springs
» simple but canonical model of soft matter
> elastic matrix should be symmetric from the energy conservation

fo = Kopxg ap=12N
Kaﬁ — K’ga

Credit: Corentin Coulais

General description of active soft material

» odd elasticity: non-symmetric elastic matrix for non-energy conserving material
> self-sustained wave generated = non-reciprocal material response
» interpreted as a non-conservational force

[Scheibner et al. Nat Phys (2020)]
K a ,3 a K,B & [Fruchart, Scheibner & Vitteli, Annu Rev Cond Matt (2023)]



Swimming with odd elasticity?

The simplest microswimmer with rotation
» Purcell’s three-link swimmer can generate a stable locomotion as a limit cycle

odd-elastic torque spring 0l

Ta = —Kaﬁaﬁez l3 ’ _@\/
k=("%, %) g

» self-organised swimming for pushers
» no driving-force, no control
> stable limit cycle via geometric nonlinearity

[Ishimoto, Moreau & Yasuda, Phys Rev E (2022)]



Swimming cell as an odd matter?

Periodic deformation = limit cycle in shape space

» Hopt bifurcation as a generic form of flagellar swimming
» Experimental observation in sperm and Chlamydomonas

position-+orientation
A

‘\
‘p

]
displacement E

[Camalet and Jiilicher, New ] Phys (2000)] [Rieser et al. arXiv (2019)]

Q. Can we calculate the odd elastic matrix of a swimming cell?




N-dim elastic matrix?

B R
1k =
(Keo 1{0)- Kaﬁ a-i():“_l_. *
B=12-,N

a a \
Ca Gart1 sphere-spring system with mass m and fluid viscous drag y
S¢ = (@ =1)L/N with neighbouring interaction of spring constant k

mza — _V(.a - aﬁ(ﬁ Ka,B — k5a+1,,8 — 2k6a,8 + k5a—1,ﬁ
> Wave equation

Find the matrix K, 5 that generates a sinusoidal wave
with a single wavenumber v: {(S4, t) = A sin(vys, — wt)




Non-local, non-reciprocal interactions

a a
Find the matrix K,z that propagates a sinusoidal wave "'J\/\/\/_O_/\/\/\/_OJ\/\/\/_ o
with a single wavenumber v: {(s,,t) = A sin(vys, — wt) Ca Caﬂ

Sq = (@ —1)L/N

Y =0 (inertial limit) @ m = 0 (zero-inertia limit)

m, = —Kup3 Ve = —Kap{s
Kap = mw? cos(Vo(Sg — sg)) Kap = yw sin(vo(sq — Sg))
Kaﬁ — K,BCZ KO(,B — —K’[ga
even elasticity odd elasticity



A quantity that characterises odd elasticity

: K(s,s")
odd-elastic modulus S

k() = ﬂ k(s,s)e E=sDdsds’ " iE ‘,Jr ’ <’
ic ic® fe®

non-reciprocity : k(s,s’) # k(s’, s) Y

Im[k(V)] # 0

v = 0 (inertial limit) m = 0 (zero-inertia limit)

2 —

MO 1800 —vo) + 800 +v)]  R() = iyz_w 1000 = vo) = 6(7 +vo)]

((s,t) = Asin(vys — wt) KH) =

2
real and even function imaginary and odd function




Active matter as autonomous system

J\/\/\,_é_/\/v\,{a)_/\/\/\,_ ((s,t) = Asin(vys — wt)
Ca Cocﬂ

Non-autonomous (control system) - Autonomous (non-equilibrium state of matter)

Via = —Kaplp + Fa(t) ¥ia = —Kaplp 9,{(s) = f c(s, )¢ (s")ds’
Kap = Kpa Kap # Kga  ic(s,s") # k(s',5)

» Swimming cell as a non-equilibrium state of matter

\\ ' @ Z »
@) -
W& energy disspation

swimming (deformation + motility)

energy injection
from molecular scales




Odd-elastohydrodynamics

Fluid-strucutre interactions

» general swimming in R" (n = 1,2,3, ...) with shape space of RN
> generalized grand resistive tensor M is symmetric and positive-definite
> force- and torque-free conditions in the body-fixed coordinates

hydrodynamic drag (odd) elastic force

—M(04, 05, , 0n) X = (8 I(i)X

State: X — (xlr x2; Tty xn; 91) 92 Y O-l ) 0-2' "ty O-N)T
position + orientation + shape (in the body-fixed coordinates)

: . : o = (01,02+,0y)"
Shape dynamics and swimming dynamics 2= ooty Or B )T
0 = —Q(0)Ko N =M= (* P)
z=-P(@)Ko or z=-P(0)Q '(0)o * Q

Kinematic problem, if the shape gait is given



Intrinsic and apparent shape spaces

human sperm data in PCA shape space

« e @ °T%,
intrinsic shape space o apparent shape space q K 2y
& intrinsic elasticity K(o) _W> & apparent elasticity K ¢
q $
— — {—— _— o
6 = —Q(0)K(o)o qg = —Kgq o
> estimate K(o) from flagellar model [Ishimoto et al. ] Theor Biol (2018)]

and experimental data » normal form of the Hopf bifurcation

—~ RLC O =5 ( ke ko) ( kn leO) 2
K= | K¢ = +
( 0 Kd) Le —ko ke —kno  kn a1

» N-link coarse-graining formulation with resistive force theory



Odd bending modulus of simple swimmers

. . 1F
sinusoidal flagellum ) human sperm data
[Gong et al.,R Phil Trans B (2018)] 05 [Ishimoto et al. ] Theor Biol (2018)] 05|
> 0f - = 0 -
g(s,t) = C;sin(ks — wt) 05 ol
— 2 | | _
k/zn 15 ! . ’ ! : 1 05 0 05 1
1 0.03 T 1T—1 —1 o e , , X1073
q odd elasticity 10— A
42 0.02 o | @ o, F 3
" ? % 4 3 $ ¢
s % qz¢ s I
0.01 * 3 p % 5 A
$ @ H ® $ .
S K i = PR
o F — A1 T O—
s ? H . o 08 2
o ., ¢ even elasticity U
0.02 %S -e-Re[i(D)] 51 %wg
o TR (D)] |
0.03 — ‘ ‘ ‘ ‘ 4 2 0 2 4
4 -2 0 2 1 D)2

v/2m » negative even elasticity (pattern formation)

> purely odd-elastic material on the limit cycle > existence of odd elasticity (phase velocity)




Swimming cell as a noisy limit cycle

Stochastic swimming formula

(A) = %F(w(qaq[g) =Tr(FJ) Jas = <]{qadq5>

(d) shape cycle in shape space

rist) €
10 um

[Ma et al. Phys Rev Lett (2014)]

» Normal form of Hopf bifurcation

q = Ae'?
A= kA -k, A2 +ACA  (Ca()Ca(t)) = 2D 45t — 1)
p = ko + knoA? + (, (Co) (o)) = 2Dy,6(t —t)




Stochastic swimming formula

1 .
(A) = §Paplaads) = TFD)  Jog = ( f audas )
ke _kﬂr2 0.3 NN B 03
P, ~ rDre 2Dr 0.2 .
ko |ke|  kno |ke| [ke 2Da §
J - — — 0 ’ . 0.1
2 2> Ty 2 ke [kn+kn

Averaged entropy production é, = S — %

Work done by odd elasticity W = — ]{ Kopqsdqa, VD {DSD = kT




Emergence of odd elasticity

by eliminating internal/external degrees
of freedom [Lin et al., ] Phys Soc Jpn (2023)]

by learning how to swim
[Lin, Yasuda, Ishimoto, Komura, Phys Rev Research (2024)]

L@ : ¢ 9 e-ww
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by local mechanosensory regulation e Ll e

[Ishimoto, Moreau, Herault, arXiv: 2405.01802] 256 128 128




Mechanosory regulations?

Flagellar dynein regulation?
» many existing hypothesis on regulation mechanisms

(mechanical clutch, curvature control...)
» mechano-chemical oscillator

[Lindemann et al. (2010)]

Flow exteroception?
> intrinsic neural oscillator (CPGQG)

» generator of rhythmic muscle contraction

~~->  coupled oscillator model

Fish undulatory swimming

2D Navier-Stokes Fish Robot
e (G e )
157 [ ~he- ik ’ 5 -4
e | <0 4 e
IP; :) ) (_ B, s
) U7 WP - =
W\ B, | e o —
¥ ) = \y\ model  model Y
NS, 0 N
v Re, .
+e
2]
£
¥
Fq
lﬁ;’

[Hamlet et al. PNAS (2023)]
[Thandiackal et al. Sci Robot (2021)]



Our model

M(J) (hydrodynamic) torque on
i-th link around j-th hinge

Force & torque balance
a=-Q(a)r P,Q :hydrodynamic coupling
z=—-Pla) z = (X, YO,,Q)T

Actuation + elasticity Sensory signal (local torque load)
T; =TCOSQ; —ka;  Si(t) =MD +MY,

Phase-coupled oscillators phase response
) 's A ~N (X’ Y)
bi=wo+C z sin(¢ — ¢i) +0-cosp; - S; &
k=t1

$ sensory signal S;(t) l

——— X,Y,0,
, Body state
actuation 7;

Inner state ¢;(t)

a;(t)




Robust undulatory swimming

C. elegans locomotion

[Pierce-Shimomura et al. (2008)]

swimming
(low viscosity)
1

0.5

> 0 — >
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swimming
 (high viscosity) crawling (on gels) FiPoP [
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0.5
0 _— > 0 —_
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-1t |
-1 ‘ | ‘ -4 -2 0
-1 0 1 T
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2% stable limit cycle emerges by local mechanosensory regulation




Emergence of non-reciprocity

Sensory signal (local torque load :
Yo (i)( (i) 1 ) Ml-(]) . torque on i-th link around j-th hinge
Si (t) = Mi + M.

Symmetry breaking through
geometrical non-locality

cosp;-S; >0 cosp; - 5; <0

phase accelerated phase deaccelerated



Summary

Conclusions

» Microswimming as a non-equilibrium state of matter
» Odd-elasticity characterises the non-reciprocity/activity in shape space
» Non-reciprocity can robustly emerge through local mechanosensory regulation
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