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Collective motion is often chaotic

bacterial suspension epithelial cell sheet reconstituted cytoskeletons

[Nishiguchi+, Nat Comm 2018] [Blanch-Mercader+, PRL 2018] [Sanchez+, Nature 2012]

“active turbulence”
[review: Alert et al., Annu. Rev. Condens. Matter Phys. 13, 143 (2022)]

Vortices have a characteristic length scale.



Active turbulence self-organizes by confinement

bacterial suspension epithelial cell sheet reconstituted cytoskeletons

[Nishiguchi+, Nat Comm 2018] [Blanch-Mercader+, PRL 2018] [Sanchez+, Nature 2012]
confine confine confine

[Wioland+, PRL 2013] [Doxzen+, Integr. Biol. 2013] [Opathalage+, PNAS 2019]



How does the vortex get destabilized?

bacterial suspension epithelial cell sheet reconstituted cytoskeletons

[Wioland+, PRL 2013] [Doxzen+, Integr. Biol. 2013] [Opathalage+, PNAS 2019]

nematicpolar

unbinding of ±1/2 defects destabilizes vortices,  
leading to active turbulence
[Opathalage+, PNAS 116, 4788 (2019)]

What’s the “route to turbulence”
& underlying mechanism
for this case?

Today’s question



Let’s change the degree of confinement!

Consider varying radius of confining wells

100 µm

？

stable vortex turbulence

[Wioland+, PRL 2013]

Route to active turbulence

radius



Experiment

 Entirely covered by PDMS 
(high O2 permeability)
➜ Long observation (several minutes)

 Same solid surface on both sides 
➜ No chirality

Daiki Nishiguchi

PDMS on 
both sides

dense suspensions of 
Bacillus subtilis

well radius: 42.0-51.0 µm, 
0.5 µm step

Our setup

Key points
fraction of CW vortices



Experiment

well radius: 42.0-51.0 µm, 
0.5 µm step

Key points

200 µm

𝑅𝑅 = 42.0 µm
↓

𝑅𝑅 = 51.0 µm
↓radius 𝑅𝑅

Simultaneous
observation of
numerous wells
➜ allowed us to 
capture transitions!



Vortices get destabilized as radius increases

Vorticity 𝜔𝜔 = 𝜵𝜵 × 𝒗𝒗

Single vortex in small wells, multiple vortices in larger wells.

radius 𝑅𝑅

single 
vortices

multiple vortices



Vortices get destabilized as radius increases

Vorticity 𝜔𝜔 = 𝜵𝜵 × 𝒗𝒗

Single vortex in small wells, multiple vortices in larger wells.

radius 𝑅𝑅

2 vortices1 vortex 4 vortices
R = 44.6 µm R = 46.7 µm R = 48.8 µm



Vortices get destabilized as radius increases

Vorticity 𝜔𝜔 = 𝜵𝜵 × 𝒗𝒗
radius 𝑅𝑅

2 vortices1 vortex 4 vortices
R = 44.6 µm R = 46.7 µm R = 48.8 µm

stable for long time reversals pulsations
x4 fast 20 μm

Let’s focus on this transition!



Detecting the vortex reversals

Sign of vortex: “spin” 

reversing vortex pairstable single vortex

R = 44.6 µm R = 46.7 µm

𝑆𝑆𝑖𝑖(𝑡𝑡): =
�𝐳𝐳 ⋅ ∑𝐫𝐫∈well(𝐫𝐫 − 𝐫𝐫center) × 𝐯𝐯(𝐫𝐫, 𝑡𝑡)

∑𝐫𝐫∈well|𝐫𝐫 − 𝐫𝐫center|

increasing radius

time [s] time [s]



Detecting the vortex reversals

reversing vortex pairstable single vortex
R = 44.6 µm R = 46.7 µm

correlation time
determined from 𝑆𝑆𝑖𝑖 𝑡𝑡 𝑆𝑆𝑖𝑖(𝑡𝑡 + 𝜏𝜏)correlation time vs radius

blue: each well
red: moving median 

time [s]

stable
single 
vortex

reversing
vortex

pair

Transition is 
clearly detected 

time [s]



Vortex reversals:  regular or irregular?

 Reversal looks rather regular & periodic...?
 Bimodal distribution of CW & CCW

reversing vortex pair

R = 46.7 µm

time [s]

Vortex reversal = periodic (?) switching of CW/CCW states
periodicity will be justified later



What about the 4-vortex state?

radius 𝑅𝑅

2 vortices1 vortex 4 vortices
R = 44.6 µm R = 46.7 µm R = 48.8 µm

stable for long time reversals pulsations
x4 fast 20 μm

Now let’s characterize this!



Multipole expansion of 4-vortex state

Decompose 𝒗𝒗 𝑟𝑟,𝜃𝜃 into angular Fourier modes: ∫ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝒗𝒗 𝑟𝑟, 𝜃𝜃 + c. c.

n=1 n=2n=0

𝐴𝐴0(𝑡𝑡) 𝐴𝐴1(𝑡𝑡) 𝐴𝐴2(𝑡𝑡)+ + +⋯=

original

1-vortex mode 2-vortex mode 4-vortex mode

𝑚𝑚𝑛𝑛
exp 𝑡𝑡 = ∫0

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑
1

2𝜋𝜋
∫ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝒗𝒗(𝑟𝑟, 𝜃𝜃; 𝑡𝑡)

2Calculate kinetic energy of each mode

to evaluate its contribution



20 µm

Multipole expansion of 4-vortex state

Kinetic energy of nth mode:

n=1 n=2

2-vortex 
mode

4-vortex
mode

𝑚𝑚𝑛𝑛
exp = ∫0

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑
1

2𝜋𝜋
∫ 𝑑𝑑𝑑𝑑𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝒗𝒗(𝑟𝑟,𝜃𝜃)

2

4-vortex state = anti-phase oscillation of & 

n=1

2-vortex mode

n=2

4-vortex mode



Summary so far: Route to turbulence (exp’t)

2 vortices1 vortex 4 vortices
R = 44.6 µm R = 46.7 µm R = 48.8 µm

20 µm
x4 fast

stable for long time regular reversals pulsations

n=1

2-vortex mode

n=2

4-vortex mode

&

Anti-phase oscillation
spinCCW

CW

bimodal

Can we understand these transitions 
theoretically?

radius 𝑅𝑅



Model for bacterial turbulence?

Hydro descriptions of bacterial turbulence w/o confinement.
Two phenomenological models in the literature.

𝜕𝜕𝑡𝑡𝒗𝒗 + 𝜆𝜆(𝒗𝒗 ⋅ 𝛻𝛻)𝒗𝒗 = −𝛻𝛻𝑝𝑝 + 𝑎𝑎𝒗𝒗 − 𝑏𝑏|𝒗𝒗|2𝒗𝒗 − Γ0∇2𝒗𝒗 − Γ2∇4𝒗𝒗
𝛻𝛻 ⋅ 𝒗𝒗 = 0

Wensink+, PNAS 2012
Dunkel+, New J Phys 2013Toner-Tu-Swift-Hohenberg (TTSH) equation

propulsion vortex formationactive stress

Nikolaevskiy equation Beresnev & Nikolaevskiy, Physica D 1993
Słomka & Dunkel, PNAS 2017

𝜕𝜕𝑡𝑡𝒗𝒗 + 𝒗𝒗 ⋅ 𝛻𝛻 𝒗𝒗 = −𝛻𝛻𝑝𝑝 + Γ0∇2𝒗𝒗 + Γ2∇4𝒗𝒗 + Γ4∇6𝒗𝒗
𝛻𝛻 ⋅ 𝒗𝒗 = 0

In both models, vortices 
have a characteristic size.

energy input
linear growth rate

𝑘𝑘

TTSH

𝑘𝑘

Nikolaevskiy

𝜵𝜵 ⋅ (𝒗𝒗𝒗𝒗)



Experimental test

For each equation, we
 determined all coefficients by least squares from exp’t data
 evaluated the residual for each time 𝑡𝑡

We only used
area far from boundary

Always,
residual(Nikolaevskiy) > residual(TTSH)

TTSH outperforms Nikolaevskiy!

In the following, we use TTSH only.



Boundary conditions

TTSH equation (non-dimensionalized)

higher-order derivative
➜ more boundary conditions needed

Boundary conditions were experimentally inferred. 
[Reinken, Nishiguchi, ... Comm Phys 3, 76 (2020)]

𝑣⃗𝑣 = 0 & 𝜔𝜔 = 0
at boundary

Daiki Nishiguchidistance from pillar center [μm]
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Boundary conditions

TTSH equation (non-dimensionalized)

with 𝑣⃗𝑣 = 0 & 𝜔𝜔 = 0 at boundary.

This reproduced non-trivial vortex lattice order observed with pillar array.

x0.5 speed

Experiment

blue:red:

[Reinken, Nishiguchi, ... Comm Phys 3, 76 (2020)]

Let’s use this for circular wells & inspect the route to turbulence!

numerics
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𝑅𝑅 = 44.6 μm 𝑅𝑅 = 46.7 μm 𝑅𝑅 = 48.8 μm

Circular well simulations

reversing vortex pairstable single vortex 4-vortex pulsation

𝑅𝑅 = 5.2 𝑅𝑅 = 5.6 𝑅𝑅 = 6.4
radius 𝑅𝑅
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Sora Shiratani

Consistent with experiments!

Let’s analyze

(see also arXiv:2304.03306
for computation method)



Reversing vortex pair

Experiment

Simulation

time [s]

𝑅𝑅 = 5.6

Seemingly regular reversals in experiment.

 s
pi

n
Limit cycle was obtained in simulations!



Multipole expansion of reversing vortex pair

original 0th mode 1st mode 2nd mode

= + + +⋯

reconstruction

 First 3 modes are relevant (having comparable amplitudes)
Can we describe them analytically?



Theory

TTSH vorticity eq. 

Igor S. Aranson

linearized
𝜕𝜕𝑡𝑡𝜔𝜔 = 𝑎𝑎𝑎𝑎 − (1 + 𝛻𝛻2)2𝜔𝜔

𝜔𝜔 = �
𝑛𝑛=−∞

∞

𝜔𝜔𝑛𝑛𝑒𝑒𝜆𝜆𝑛𝑛𝑡𝑡 𝜔𝜔𝑛𝑛 = 𝐶𝐶𝑛𝑛+𝐽𝐽𝑛𝑛(𝑘𝑘𝑛𝑛+𝑟𝑟) + 𝐶𝐶𝑛𝑛−𝐽𝐽𝑛𝑛(𝑘𝑘𝑛𝑛−𝑟𝑟)) 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + c.c.

𝑘𝑘𝑛𝑛± = 1 ± 𝑎𝑎 − 𝜆𝜆𝑛𝑛

𝑣𝑣𝑛𝑛𝜃𝜃 = −
𝐶𝐶𝑛𝑛+

2𝑘𝑘𝑛𝑛+
Δ𝐽𝐽𝑛𝑛(𝑘𝑘𝑛𝑛+𝑟𝑟) +

𝐶𝐶𝑛𝑛−

2𝑘𝑘𝑛𝑛−
Δ𝐽𝐽𝑛𝑛(𝑘𝑘𝑛𝑛−𝑟𝑟) + 𝑛𝑛𝐶𝐶𝑛𝑛0𝑟𝑟𝑛𝑛−1 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + c.c.

𝑣𝑣𝑛𝑛𝑟𝑟 =
𝑖𝑖𝑖𝑖
𝑟𝑟

𝐶𝐶𝑛𝑛+

𝑘𝑘𝑛𝑛+ 2 𝐽𝐽𝑛𝑛(𝑘𝑘𝑛𝑛+𝑟𝑟) +
𝐶𝐶𝑛𝑛−

𝑘𝑘𝑛𝑛− 2 𝐽𝐽𝑛𝑛(𝑘𝑘𝑛𝑛−𝑟𝑟) + 𝐶𝐶𝑛𝑛0𝑟𝑟𝑛𝑛 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + c.c.

with

Bessel function

Δ𝐽𝐽𝑛𝑛 𝑥𝑥 ≡ 𝐽𝐽𝑛𝑛−1 𝑥𝑥 − 𝐽𝐽𝑛𝑛+1 𝑥𝑥

BC: 𝑣⃗𝑣𝑛𝑛 = 0 & 𝜔𝜔𝑛𝑛 = 0 at 𝑟𝑟 = 𝑅𝑅

general solutions

➜ 𝜆𝜆𝑛𝑛,𝑘𝑘𝑛𝑛±,𝐶𝐶𝑛𝑛±determined



Linear growth rate 𝜆𝜆𝑛𝑛 vs radius 𝑅𝑅

Transitions qualitatively accounted for 
by linear instability of 𝑛𝑛 = 0,1,2 modes

NB) Actual transition points are altered
by nonlinear effects (described later)

gr
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th
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e

𝑛𝑛 = 0

𝑛𝑛 = 1
𝑛𝑛 = 2

𝑛𝑛 = 0
1-vortex

𝑛𝑛 = 1
2-vortex

𝑛𝑛 = 2
4-vortex

1-vortex 2-vortex 4-vortex



Spatial structure of vortices

Simulations (reversing vortex pair)

Experiment
(single vortex)

tangential velocity 𝑣𝑣𝑛𝑛𝜃𝜃

𝑟𝑟

radial velocity 𝑣𝑣𝑛𝑛𝑟𝑟

𝑟𝑟

solid: linearized theory
dashed: TTSH numerics

𝑟𝑟

solid: exp’t
dashed: theory

𝑣𝑣0𝜃𝜃

𝜔𝜔0 remarkable
agreement!



Time evolution of the coefficients in 2-vortex state

∴ Periodic reversal
of vortex pair!

 Limit cycle solution!

 �𝐶𝐶 > 0 CCW
𝐶𝐶 < 0 CW

Time evolution equations (ODEs) for mode coefficients
𝜕𝜕𝑡𝑡𝐶𝐶 = 𝜆𝜆0𝐶𝐶 − 𝑐𝑐1𝐶𝐶3 − 𝑐𝑐2𝐶𝐶|𝐴𝐴1|2 − 𝑐𝑐3𝐶𝐶|𝐴𝐴2|2 − 2𝑐𝑐4Re𝐴𝐴2𝐴𝐴12∗

𝜕𝜕𝑡𝑡𝐴𝐴1 = 𝜆𝜆1𝐴𝐴1 − 𝑏𝑏1𝐴𝐴1|𝐴𝐴1|2 − 𝑏𝑏2𝐴𝐴1𝐶𝐶2 − 𝑏𝑏3𝐴𝐴1|𝐴𝐴2|2 − 𝑏𝑏4𝐶𝐶𝐴𝐴2𝐴𝐴1∗ + 𝛿𝛿1𝐴𝐴1𝐶𝐶 + 𝛾𝛾1𝐴𝐴2𝐴𝐴1∗

𝜕𝜕𝑡𝑡𝐴𝐴2 = 𝜆𝜆2𝐴𝐴2 − 𝑎𝑎1𝐴𝐴2|𝐴𝐴2|2 − 𝑎𝑎2𝐴𝐴2𝐶𝐶2 − 𝑎𝑎3𝐴𝐴2|𝐴𝐴1|2 − 𝑎𝑎4𝐶𝐶𝐴𝐴12 + 𝛿𝛿2𝐴𝐴2𝐶𝐶 + 𝛾𝛾2𝐴𝐴12

Dynamics
Mode decomposition

𝜔𝜔 𝑟𝑟,𝜃𝜃, 𝑡𝑡 ≃ 𝐶𝐶(𝑡𝑡)𝜔𝜔0(𝑟𝑟) + [𝐴𝐴1 𝑡𝑡 𝑒𝑒𝑖𝑖𝑖𝑖𝜔𝜔1(𝑟𝑟) + 𝐴𝐴2(𝑡𝑡)𝑒𝑒2𝑖𝑖𝑖𝑖𝜔𝜔2(𝑟𝑟) + c. c. ]
1-vortex 2-vortex 4-vortex

Bessel (eigenfunctions of linearized equation)

plugging it into TTSH

solving numerically



Reversing vortex pair

≈

theory numerics

trajectories in phase space



Reversing vortex pair to 4-vortex pulsations

≈

theory numerics

≈

increasing radius4-vortex pulsations 
also reproduced!



Coupling of the 3 modes

We obtain 𝛿𝛿2, 𝛾𝛾2 ∝ 𝜆𝜆 of 𝜆𝜆 𝑣⃗𝑣 ⋅ ∇ 𝑣⃗𝑣 

➜ active stress is crucial for the reversing vortex state!
 In our theory, limit cycle was obtained only for 𝜆𝜆 ≳ 3.75.
 Experiment: 𝜆𝜆 ≈ 4.2. Consistent!

linear growth rates
𝑛𝑛 = 0

𝑛𝑛 = 1

𝑛𝑛 = 2

but we showed 𝑛𝑛 = 2 mode is
essential for vortex reversing.

What activates this mode?

Time evolution equations (ODEs) for mode coefficients
𝜕𝜕𝑡𝑡𝐶𝐶 = 𝜆𝜆0𝐶𝐶 − 𝑐𝑐1𝐶𝐶3 − 𝑐𝑐2𝐶𝐶|𝐴𝐴1|2 − 𝑐𝑐3𝐶𝐶|𝐴𝐴2|2 − 2𝑐𝑐4Re𝐴𝐴2𝐴𝐴12∗

𝜕𝜕𝑡𝑡𝐴𝐴1 = 𝜆𝜆1𝐴𝐴1 − 𝑏𝑏1𝐴𝐴1|𝐴𝐴1|2 − 𝑏𝑏2𝐴𝐴1𝐶𝐶2 − 𝑏𝑏3𝐴𝐴1|𝐴𝐴2|2 − 𝑏𝑏4𝐶𝐶𝐴𝐴2𝐴𝐴1∗ + 𝛿𝛿1𝐴𝐴1𝐶𝐶 + 𝛾𝛾1𝐴𝐴2𝐴𝐴1∗

𝜕𝜕𝑡𝑡𝐴𝐴2 = 𝜆𝜆2𝐴𝐴2 − 𝑎𝑎1𝐴𝐴2|𝐴𝐴2|2 − 𝑎𝑎2𝐴𝐴2𝐶𝐶2 − 𝑎𝑎3𝐴𝐴2|𝐴𝐴1|2 − 𝑎𝑎4𝐶𝐶𝐴𝐴12 + 𝛿𝛿2𝐴𝐴2𝐶𝐶 + 𝛾𝛾2𝐴𝐴12

The rest can be activating!

2-vortex

damping



Summary: Reversal is a precursor of active turbulence

Underlying mechanism = orchestration of
Active stress brings this orchestration.
 Bifurcation is generic.
➜ Expected to arise in other active turbulence systems too!

bacteria
experiment analytical theory

Time [s]

sp
in
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oe
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TTSH
numerics

sp
in

ODEs for the first 3 
azimuthal modes obtained
& account for the instability! 

n=1 n=2n=0

arXiv: 2407.05269 (main) & 2304.03306 (numerical detail)Ref:
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