Route to turbulence of bacterial suspensions under confinement

Kazumasa A. Takeuchi (UTokyo)

with

Sora Shiratani (UTokyo) → Integral from Oct (UTokyo) **EXPERIMENTE SCIENCE TOKYO [NUMERICS] Igor S. Aranson (Penn State & UTokyo) [theory] Daiki Nishiguchi**

Nishiguchi et al., arXiv: 2407.05269

Collective motion is often chaotic

[Nishiguchi+, Nat Comm 2018] [Blanch-Mercader+, PRL 2018] [Sanchez+, Nature 2012]

bacterial suspension epithelial cell sheet reconstituted cytoskeletons

"active turbulence"

[review: Alert et al., Annu. Rev. Condens. Matter Phys. 13, 143 (2022)]

Vortices have a characteristic length scale.

Active turbulence self-organizes by confinement

bacterial suspension epithelial cell sheet reconstituted cytoskeletons

How does the vortex get destabilized?

bacterial suspension epithelial cell sheet reconstituted cytoskeletons $00:00$ $50 \mu m$ [Wioland+, PRL 2013] [Doxzen+, Integr. Biol. 2013] [Opathalage+, PNAS 2019]

What's the "route to turbulence" & underlying mechanism for this case?

unbinding of ±1/2 defects destabilizes vortices, leading to active turbulence [Opathalage+, PNAS 116, 4788 (2019)]

Today's question

Vortices get destabilized as radius increases

Single vortex in small wells, multiple vortices in larger wells.

Vortices get destabilized as radius increases

Single vortex in small wells, multiple vortices in larger wells.

Detecting the vortex reversals

Detecting the vortex reversals

Vortex reversals: regular or irregular?

Vortex reversal = periodic (?) switching of CW/CCW states

periodicity will be justified later

What about the 4-vortex state?

Multipole expansion of 4-vortex state

Decompose $v(r, \theta)$ into angular Fourier modes: $\int d\theta e^{-in\theta} v(r, \theta) + c.c.$

Multipole expansion of 4-vortex state

Kinetic energy of *n*th mode: $m_n^{\text{exp}} = \int_0^R$ \boldsymbol{d} 1 $\frac{1}{2\pi}\int d\theta e^{-in\theta}\mathcal{v}(r,\theta)$ 2

Model for bacterial turbulence?

Hydro descriptions of bacterial turbulence w/o confinement. Two phenomenological models in the literature.

Experimental test

For each equation, we

We only used area far from boundary

- determined all coefficients by least squares from exp't data
- evaluated the residual for each time t

Boundary conditions

TTSH equation (non-dimensionalized) $\left|\partial_{t}\vec{v}+\lambda\vec{v}\cdot\nabla\vec{v}=-\nabla q+a\vec{v}-b|\vec{v}|^{2}\vec{v}-\left(1+\nabla^{2}\right)^{2}\vec{v}\right|$

higher-order derivative

→ more boundary conditions needed

Boundary conditions were experimentally inferred. [Reinken, Nishiguchi, ... Comm Phys 3, 76 (2020)]

Boundary conditions

This reproduced non-trivial vortex lattice order observed with pillar array.

Let's use this for circular wells & inspect the route to turbulence!

Reversing vortex pair

Multipole expansion of reversing vortex pair

- First 3 modes are relevant (having comparable amplitudes)
- Can we describe them analytically?

Igor S. Aranson

Linear growth rate λ_n vs radius R

Transitions qualitatively accounted for by linear instability of $n = 0,1,2$ modes

NB) Actual transition points are altered by nonlinear effects (described later)

Spatial structure of vortices

Dynamics

 0.4

 0.2

 $0₀$

 -0.2

 -0.4

 500

Time evolution equations (ODEs) for mode coefficients $\partial_t C = \lambda_0 C - c_1 C^3 - c_2 C |A_1|^2 - c_3 C |A_2|^2 - 2 c_4 Re A_2 A_1^{2*}$ $\partial_t A_1 = \lambda_1 A_1 - b_1 A_1 |A_1|^2 - b_2 A_1 C^2 - b_3 A_1 |A_2|^2 - b_4 C A_2 A_1^* + \delta_1 A_1 C + \gamma_1 A_2 A_1^*$ $\partial_t A_2 = \lambda_2 A_2 - a_1 A_2 |A_2|^2 - a_2 A_2 C^2 - a_3 A_2 |A_1|^2 - a_4 C A_1^2 + \delta_2 A_2 C + \gamma_2 A_1^2$

$\frac{1}{2}$ solving numerically

1000

 $|A_1|$

Time evolution of the coefficients in 2-vortex state

Limit cycle solution!

∴ Periodic reversal \bullet $\overline{}$ $C > 0$ CCW

of vortex pair!

 $C < 0$ CW

Reversing vortex pair

trajectories in phase space

theory numerics

Reversing vortex pair to 4-vortex pulsations

Coupling of the 3 modes

but we showed $n = 2$ mode is essential for vortex reversing. What activates this mode?

Time evolution equations (ODEs) for mode coefficients $\partial_t C = \lambda_0 C - c_1 C^3 - c_2 C |A_1|^2 - c_3 C |A_2|^2 - 2 c_4 Re A_2 A_1^{2*}$ $\partial_t A_1 = \lambda_1 A_1 - b_1 A_1 |A_1|^2 - b_2 A_1 C^2 - b_3 A_1 |A_2|^2 - b_4 C A_2 A_1^* + \delta_1 A_1 C + \gamma_1 A_2 A_1^*$ $\partial_t A_2 = \lambda_2 A_2 - a_1 A_2 |A_2|^2 - a_2 A_2 C^2 - a_3 A_2 |A_1|^2 - a_4 C A_1^2 + \delta_2 A_2 C + \gamma_2 A_1^2$

damping

The rest can be activating!

• We obtain δ_2 , $\gamma_2 \propto \lambda$ of $\lambda\left(\vec{v}\cdot\nabla\right)\vec{v}$

 \rightarrow active stress is crucial for the reversing vortex state!

- In our theory, limit cycle was obtained only for $\lambda \gtrsim 3.75$.
- Experiment: $\lambda \approx 4.2$. Consistent!

• Bifurcation is generic.

→ Expected to arise in other active turbulence systems too!

Ref: **arXiv: 2407.05269** (main) & 2304.03306 (numerical detail)