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Published: 2023-11-03, volume 7, page 1161 A central task in finite-time thermodynamics is to minimize the excess or dissipated work W;ss when

manipulating the state of a system immersed in a thermal bath. We consider this task for an N-body

Eprint: arxivi2211.02065v3 system whose constituents are identical and uncorrelated at the beginning and end of the process. In
Doi: https://doi.org/10.22331/9-2023-11-03-1161 the regime of slow but finite-time processes, we show that W, can be dramatically reduced by
Citation: Quantum 7, 1161 (2023) considering collective protocols in which interactions are suitably created along the protocol. This can

even lead to a sublinear growth of W with N: Wy« &< N* with < 1; to be contrasted to the
expected Wy, o< N satisfied in any noninteracting protocol. We derive the fundamental limits to such
collective advantages and show that = = 0 is in principle possible; however, it requires long-range
interactions. We explore collective processes with spin models featuring two-body interactions and
achieve noticeable gains under realistic levels of control in simple interaction architectures. As an
application of these results, we focus on the erasure of information in finite time and prove a faster
convergence to Landauer’s bound.
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For classical ballistic transport in a multiterminal geometry, we derive a universal trade-oft relation _ ' o '
Two-terminal clectronic transport systems with a rectangular transmission can violate standard thermo-

berween total dissipation and the precision, at which particles are extracted from individual reservoirs. . _ _ T _ . _
| I a I l | I I I l ra I l S O r Remarkably, this hound hecomes significantly weaker in the presence of a magnelic field breaking time- dynamic unccrtamty_rclamms. lh.'s . P(’“""blc hcy.nnd the lincar response regime }.md_fnr JRIEIMERETS L'hat
reversal symmetry. By working out an explicit model for chiral trunsport enforced by a strong magnelic are not acccssnb]rt with rate cql.fatums ()bcy'lns detailed halance. I-o(?%cr h-i)u.nds ‘nngln:-mng from fi “Cf'““h"“
theorem symmeuries alone remain respected. We demanstrate that optimal finite-sized guantum daot chains can

implement rectangular transmission functions with high accuracy and discuss the resulting violations of standard
thermodyvoamic uncertainty relations as well as heart engine performance.

field, we show that our hounds are tight. Beyond the classical regime, we find thal, in quantum systems lar
from equilibrium, the comelaled exchange of particles makes it possible o exponentially reduce the
thermodynamic cost of precision.
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Thermodynamic geometry

A framework for optimising finite-time thermodynamic processes
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How It All Began
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1. R. Stephen Berry Go to: »

The topic—or field—of finite time thermodynamics has an interesting history. Its stimulus was a far cry
from a motivation to do basic science. Its real origins began when I moved to The University of Chicago in
1964. I had thought I was prepared to adapt to the Chicago environment, but it turned out otherwise. At that
time, Chicago was a very smoky, dirty, even smelly city. Each morning, windowsills had new layers of fine
grit that had drifted in from the outside during the night. I found myself angry that my new city could have
such terrible air pollution. I was sufficiently troubled that I wrote a letter to then-Mayor Richard Daley,
which began, “Dear Mayor Daley, You live like a pig!” I went on to say that I had heard that the City of
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How It All Began As a freshman graduate student looking for an advisor to work with, I was looking for one to underwrite a
project exploring the differential geometry of thermodynamics. When I approached Steve Berry, he
responded with a question, “While you’re at it, can you put time in?” It was spring of 1973 and I had found
my mentor.
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The notion seemed intriguing. Having been raised in the deeply structuralist traditions prevailing in
mathematics departments in the 1970s, it seemed likely to me that understanding the mathematical
structure of thermodynamics would enable us to see how this structure might accommodate time. I had
studied the differential geometrical framework of classical mechanics and knew how time dependence

The topic—or field—of finite time thermodynamics has an interesting history. Its stimulus was a far cry
from a motivation to do basic science. Its real origins began when I moved to The University of Chicago in
1964. I had thought I was prepared to adapt to the Chicago environment, but it turned out otherwise. At that
time, Chicago was a very smoky, dirty, even smelly city. Each morning, windowsills had new layers of fine
grit that had drifted in from the outside during the night. I found myself angry that my new city could have
such terrible air pollution. I was sufficiently troubled that I wrote a letter to then-Mayor Richard Daley,
which began, “Dear Mayor Daley, You live like a pig!” I went on to say that I had heard that the City of

changes the symplectic structure on the manifold of configurations into a contact structure. I thought there
was a good chance of finding something similar for thermodynamics.
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Metric geometry of equilibrium thermodynamics ¥
F. Weinhold

'.) Check for updates

J. Chem. Phys. 63, 2479-2483 (1975)
https://doi.org/10.1063/1.431689

&\ Tools v

It is shown that the principal empirical laws of equilibrium thermodynamics can be brought into
correspondence with the mathematical axioms of an abstract metric space. This formal
correspondence permits one to associate with the thermodynamic formalism a geometrical aspect,
with intrinsic metric structure, which is distinct from that arising from graphical representations of

equilibrium surfaces in phase space.

2. Peter Salamon Go to: )

As a freshman graduate student looking for an advisor to work with, I was looking for one to underwrite a
project exploring the differential geometry of thermodynamics. When I approached Steve Berry, he
responded with a question, “While you’re at it, can you put time in?” It was spring of 1973 and I had found
my mentor.

The notion seemed intriguing. Having been raised in the deeply structuralist traditions prevailing in
mathematics departments in the 1970s, it seemed likely to me that understanding the mathematical
structure of thermodynamics would enable us to see how this structure might accommodate time. I had
studied the differential geometrical framework of classical mechanics and knew how time dependence
changes the symplectic structure on the manifold of configurations into a contact structure. I thought there
was a good chance of finding something similar for thermodynamics.
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Thermodynamic Length and Dissipated Availability

Peter Salamon 1
Depariment of Mathemalical Sciences, San Diego State University, San Diego, California 92182 2
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(Received 10 January 1983)

New expresgions for the availability dissipated in a finite-time endoreversible process
are found by use of Weinhold’s metric on equilibrium states of a thermodynamic system.
In particular, the dissipated availability is given by the square of the length of the cor-
responding curve, times a mean relaxation time, divided by the total time of the process.
The results extend to local thermodynamic equilibrium if instead of length one uses dis-
tance (length of the shortest curve) between initial and final states.

PACS numbersg: 035.70.-a \



From (macroscopic) thermodynamics to stochastic thermodynamics:

Thermodynamic Metrics and Optimal Paths

David A. Sivak and Gavin E. Crooks
Phys. Rev. Lett. 108, 190602 — Published 8 May 2012
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From stochastic thermodynamics to quantum thermodynamics:

Thermodynamic length for far-from-equilibrium quantum systems

Sebastian Deffner and Eric Lutz
Phys. Rev. E 87, 022143 — Published 28 February 2013
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General framework for geometric thermo
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Multiple timescales
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Finite-time Landauer erasure (at strong coupling)

An application of thermodynamic geometry

See also: Finite-time erasing of information stored in fermionic bits

Giovanni Diana, G. Baris Bagci, and Massimiliano Esposito
Phys. Rev. E 87, 012111 — Published 11 January 2013

Finite-Time Landauer Principle

Karel Proesmans, Jannik Ehrich, and John Bechhoefer

Phys. Rev. Lett. 125, 100602 — Published 3 September 2020 . T : .
e e SR Geometrical Bounds of the Irreversibility in Markovian Systems

Tan Van Vu and Yoshihiko Hasegawa
Phys. Rev. Lett. 126, 010601 — Published 4 January 2021

Finite-Time Quantum Landauer Principle and Quantum Coherence

Tan Van Vu and Keiji Saito

Phys. Rev. Lett. 128, 010602 — Published 4 January 2022 . . . . .
R S Universal Bound on Energy Cost of Bit Reset in Finite Time

Yi-Zheng Zhen, Dario Egloff, Kavan Modi, and Oscar Dahlsten
Phys. Rev. Lett. 127, 190602 — Published 1 November 2021

Thermodynamic Unification of Optimal Transport: Thermodynamic
Uncertainty Relation, Minimum Dissipation, and Thermodynamic

Speed Limits Speed Limit for a Highly Irreversible Process and Tight Finite-Time

Tan Van Vu and Keiji Saito Landauer’s Bound

Phys. Rev. X 13, 011013 — Published 3 February 2023
Jae Sung Lee, Sangyun Lee, Hyukjoon Kwon, and Hyunggyu Park

Phys. Rev. Lett. 129, 120603 — Published 13 September 2022

... and many more



Application: Information erasure in finite time

X

Landauer. IBM J. Res. Dev. 5 183 (1961)
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Erasure of for a single-level quantum dot
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possible protocols for erasure
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We take the continuum limit and wide-band limit:
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Reversible o possible protocols for erasure
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High-temperature limit
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Collective advantages in finite-time thermodynamics



Collective Landauer erasure A
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Local vs global erasure
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More realistic control

Restrict to two-body interaction with few control parameters




More realistic control




Erasure on a 1D spin chain
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Erasure on a all-to-all model
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Erasure on the star model
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- Same as star model, but in £ layers

1010

== 2D pyramid

mm W

IIll(

dzss —

(4f = 1)2 i




10104 === 2D pyramid

= == 3D pyramid

=




’ (1) = L(A &) —p)] — iA(t) = Z|p()]
tp T Teq peq P dtp T %

. . kgTn?
Beyond linear-response (slow driving) W, ;.. = kzT'In2 + 2 ]\77[ + O(r™?)
T
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Finite-time Landauer erasure at strong coupling

Weak coupling
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Collective thermodynamic advantage
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Quantum thermodynamic geometry for many-body driven systems

Collective thermodynamic advantage

Sub-linear scaling of dissipation with two-body interactions

2| T No interaction 2-D pyramid
10 1 — 1-D spin chain X  3-D pyramid
| %= 2-body all-to-all

| —— Star (upper-bound)
W — AF + WdlS < N Fiu coriid
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