Multimessenger astronomy with compact binary mergers in light of O4

Koutarou Kyutoku Chiba University

Plan of the talk

- 1. Current status of gravitational-wave observations
- 2. r-process nucleosynthesis and kilonova
- 3. Future direction: black-hole formation
- 4. Summary

1. Current status of gravitational-wave observations

Gravitational-wave detectors

http://gwcenter.icrr.u-tokyo.ac.jp/wp-content/themes/lcgt/images/img_abt_lcgt.jpg

KAGRA (Kamioka, Japan)

Advanced LIGO (Hanford/Livingston, USA)

https://www.advancedligo.mit.edu/graphics/summary01.jpg

Advanced Virgo (Pisa, Italy)

http://virgopisa.df.unipi.it/sites/virgopisa.df.unipi.it.virgopisa/files/banner/virgo.jpg

Observed event by the end of O3

~90 binary black holes vs. 2 binary neutron stars

Mass distribution of black holes

Note: this is the distribution of primary black holes

Binary neutron star: GW170817

First Cosmic Event Observed in Gravitational Waves and Light

Colliding Neutron Stars Mark New Beginning of Discoveries

Collision creates light across the entire electromagnetic spectrum. Joint observations independently confirm Einstein's General Theory of Relativity, help measure the age of the Universe, and provide clues to the origins of heavy elements like gold and platinum

avitational wave lasted over 100 secon

On August 17, 2017, 12:41 UTC, LIGO (US) and Virgo (Europe) detect gravitational waves from the merger of two neutron stars, each around 1.5 times the mass of our Sun. This is the first detection of spacetime ripples from neutron stars.

Within two seconds, NASA's Fermi Gamma-ray Space Telescope detects a short gamma-ray burst from a region of the sky overlapping the LIGO/Virgo position. Optical telescope observations pinpoint the origin of this signal to NGC 4993, a galaxy located 130 million light years distant.

https://www.ligo.org/detections/GW170817/images-GW170817/gatech-moviestill2.png-O

2025/1/28

Gravitational waveform

Binaries merge earlier for stiffer equations of state This allows us to measure the tidal deformablity

Current status of understanding

The equation of state has already been constrained and will be constrained more severely in the near future

AT 2017gfo and the host galaxy

The redshift is determined and H_0 is measured

Did GW170817 form a black hole?

Nobody knows the answer Important for

- QCD phase structure
- gamma-ray burst
- r-process and kilonova

Gravitational waves are emitted for 10-100ms at ~kHz and will be the key [neutrinos? Kyutoku-Kashiyama 2018]

Second event: GW190425

Total mass $m_{tot} = 3.4^{+0.3}_{-0.1} M_{\odot}$, no EM counterpart Heavier by >5sigma than Galactic binary neutron stars

Observation plan and the status

O4b will continue until early October with break

O5 will be 2027-2030, and then detectors are upgraded

Updated 2025-01-24	— 01	I 🗕 Oź	2 - 03	— O4	— O5
LIGO	80 Мрс	100 Мрс	100-140 Мрс	<i>150</i> -160 Мрс	240-325 Mpc
Virgo		30 Мрс	40-50 Мрс	50-80 Mpc	See text
KAGRA			0.7 Мрс	1-3 ≏10 Mpc Mpc	25-128 Mpc
https://observing.d	ocs.ligo.org/pl	an/	1 1 1		
G2002127-v27	2015 2016	2017 2018	2019 2020 2021	2022 2023 2024 2025 2026	2027 2028 2029 2030

Candidate from O4

~190 binary black holes vs. **0 binary neutron stars** (with a few black hole-neutron star merger candidates)

~~/	GraceDB	Public Alerts	🝷 Latest	/gracedb.ligo.org/superevents/public/O4/#				
Pleas	e log in to view full de	atabase contents.						
	Event ID	Possible Source (Probability)	Significant	UTC	GCN	Location	FAR	Comments
	S250119cv	BBH (>99%)	Yes	Jan. 19, 2025 19:02:38 UTC	GCN Circular Query Notices VOE		1 per 7.9146e+11 years	
	S250119ag	BBH (>99%)	Yes	Jan. 19, 2025 02:51:38 UTC	GCN Circular Query Notices VOE		1 per 94621 years	
	S250118dp	BBH (>99%)	Yes	Jan. 18, 2025 17:05:23 UTC	GCN Circular Query Notices VOE		1 per 5.7028e+16 years	

Thought and concern

Binary-neutron-star mergers are "less frequent than binary-black-hole mergers" This is not particularly surprising at least for me (and probably most gravitational-wave astronomers)

"in fact, two-orders-of-magnitude less frequent"

Unexpected at least for me, unlikely to be a fluke

- consistent with short-hard gamma-ray bursts?
- consistent with r-process elements in the universe?

Back-of-the-envelope estimation

Rate at the end of O3 [LIGO&Virgo&KAGR	A 2023]	BNS								
Now this might be lowered by ~3	Model	$m_1 \in [1, 2.5] M_{\odot}$ $m_2 \in [1, 2.5] M_{\odot}$								
(from #binary black holes) 100?	PDB (pair)	170^{+270}_{-120}								
	PDB (ind)	44^{+96}_{-34}								
Milky-way equivalent galaxy has	MS	660^{+1040}_{-530}								
the density of $\sim 0.01~{ m Mpc}^{-3}$	BGP	$98.0^{+260.0}_{-85.0}$								
-> once in $\sim 10^5$ vr in our Galaxy?	Merged	10–1700								
fonde in 10 grintour europy.		$= \operatorname{Gpc}^{-3} \operatorname{yr}^{-1} =$								
Galactic r-process production rate $\sim 10^{-6} M_{\odot} {\rm yr}^{-1}$										
One merger produces ~ $0.1M_{\odot}$ r-process element ???										

2. r-process nucleosynthesis and kilonova

Universality of r-process elements

Most metal-poor stars that are likely experienced only a few r-process events show similar patterns to the solar abundance

Individual r-process events must reproduce this pattern ⓒ (with possible exceptions) 릿

Condition for the solar pattern

The solar pattern tends to be reproduced if the merger results in short-lived remnant formation

Merger and gravitational waves

2025/1/28

Mass ejection mechanism

Dynamical mass ejection

Fast and neutron-rich ejecta right after merger

Postmerger wind/outflow

Slow and moderately neutron-rich ejecta generated on ~1s time scale Long-lived remnants can eject a large amount of mass

Comparison: ejecta mass

 $\sim 0.01 M_{\odot}$ may be ejected from short-lived remnants (<~20ms), and the upper limit appears to be $\sim 0.03 M_{\odot}$

 $\sim 0.1 M_{\odot}$ may be ejected from long-lived remnants

Comparison: electron fraction

 $Y_e =$ #proton/#nucleon = $n_p / (n_p + n_n)$

Abundant low- Y_e for short-lived from dynamical ejecta

 $Y_e > 0.25$ is dominant for long-lived due to the wind

2025/1/28

Comparison: r-process pattern

Short-lived better reproduce the solar r-process pattern Long-lived may also be allowed if the viscosity is strong

How the electron fraction is given

When the e^-e^+ capture becomes slower than the expansion of the ejecta, Y_e freezes out

Comparison: kilonova

~ $0.05M_{\odot}$ of AT 2017gfo may be possible only with long-lived remnants... the "norm" with high viscosity?

Magnetohydrodynamics (MHD)

Realistically, viscosity is caused by magnetic turbulence MHD simulations tend to produce lower-Ye ejecta than viscous hydrodynamics... room for long-lived remnants?

Prompt black-hole formation

Asymmetric binaries eject material even if the remnant collapses immediately, but only $< 0.01 M_{\odot}$

GW190425-like systems are unlikely to be the norm

Absorption line of strontium

Identification of elements requires the spectrum and careful decomposition of absorption/emission lines

Although it is difficult for the kilonova because of fast motion/many elements, effort are ongoing

And further heavy elements?

Kilonova from GRB 230307A?

Some reports of kilonovae from long gamma-ray bursts GRB 230307A: very bright 35s burst from z~0.065

Emission line of Te?

r-process nucleosynthesis from long gamma-ray burst? Binary-merger-driven long GRB, or collapsar r-process?

3. Future direction: black-hole formation

Black-hole formation as a key

Sudden shutdown indicates the gravitational collapse Information for gravitational, nuclear, and astrophysics

Future high-frequency observation

The high density requires high-frequency observations

$$f \sim \sqrt{G\rho}$$

Some proposals are made for postmerger signals

^{2025/1/28}

Third-generation detector

Einstein Telescope, Cosmic Explorer ... aiming at more precise understanding of already-detected binaries

Distinguishable in reality?

Bayesian hypothesis testing with simulated real signals

$$B = \frac{Z_{co}}{Z_{pt}} \sim \frac{L(\text{data}|\text{crossover})}{L(\text{data}|\text{phase transition})}$$

Compare the consistency of the residual with the noise $L \propto \exp\left(-\frac{1}{2}|\text{data} - \text{waveform model}|^2\right)$

Transition scenarios should easily be distinguishable with sensitive detectors and/or nearby events

Distinguishability in data analysis

AdLIGO is insufficient even at design sensitivity (left) Third-generation detectors may do at >100Mpc (right)

Multimessenger observation

If the collapse is too early, no material is left outside and the kilonova cannot be as bright as AT 2017gfo

Our crossover model may be pass this test Mwith mass asymmetry (1s-order PT trivially passes this test because no gravitational collapse)

4. Summary

Summary

- Taking the result of O4 observation, the rate of binary-neutron-star mergers may not be very high, and it is becoming unclear whether they can explain the amount of all the Galactic r-process elements.
- If the merger remnant is long-lived, a large amount of mass is ejected with an associated bright kilonova, but the r-process pattern may be lighter-than-solar.
- A short-lived remnant is advantageous in terms of the r-process pattern, but the mass is not sufficient.
- Identifying black-hole formation will be important.

Appendix

Black hole-neutron star binaries

GW200115 remains but GW200105 went subthreshold

Neutron star binary coalescence

Gravitational waves

high-density matter signature: equation of state, QCD... test of the theory of gravitation in a non-vacuum

Formation of a hot massive remnant (star/disk)

central engine of short gamma-ray bursts

Mass ejection of neutron-rich material

r-process nucleosynthesis

radioactively-driven "kilonova/macronova"

Electromagnetic counterpart

EM radiation will accompany neutron star mergers

localization

host identification cosmological redshift

ejecta properties ejection mechanism r-process element

Sky map and localization accuracy

Triangulation by detectors

Sky position is determined via the timing difference

Short gamma-ray burst

About 10^{51} erg/s explosions - the sun is $\sim 4 \times 10^{33}$ erg/s

Long-soft GRB: $\geq 2s$ deaths of massive stars

Short-hard: ≤ 2s
neutron star binary merger?
rigorous confirmation needs
gravitational waves

http://www.daviddarling.info/images/gamma-ray_bursts.jpg

GRB 170817A

- Fermi and INTEGRAL agree each other though relatively weak
- The 1.7s delay from GWs
- jet launch
- jet propagation in the ejected material
- onset of transparency

Kilonova from GRB 211211A?

R-process nucleosynthesis in long gamma-ray bursts? Binary-merger-driven long gamma-ray bursts?

Bigger picture

Where are the elements produced in the universe?

Group 🕨	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period 🔻																			Noble
H He Li: big bang nucleosynthesis												gases							
0													Some elements near						
Nonmetals 1	1		Be, B:	COS	smi	c-ra	ay s	pall	atio	on				the da		2			
	н			\mathbf{a}	۲a			Li. c.	Fall	or o	امىر	+:~	20	some	times o	called n	netallo	ids	He
Metals 2	3	4	C, N, I	J,	. Fe	e, Co	Ο, Ν	II: S	lena	are	VOI	ulic	2N	5	6	7	8	9	10
	Li	Be													Ne				
3 11 12 Transition metals							als				13	14	15	16	17	18			
	Na	Mg				(somet	imes e	xcl. gro	oup 12)			AI	i Si	P	S	CI	Ar
4	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	i As	Se	Br	Kr
5	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Ū	Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	L.	Xe
6	55	56	La to Yh	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Ŭ	Cs Ba	Ba		Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	87	88	Ac to No	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
,	Fr	Ra		Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
a black fibliock										p block (aval. Ha)									
	(incl		I-DIUCK											р-1		5701.1			
(inci. ne)																			
Lanthanides			57	58	59	60	61	62	63	64	65	66	67	68	69	70			
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Ib	Dy	Ho	Er	Im	Yb		
Actinides			89	90	91	92	93	94	95	96	97	98	99	100	101	102			
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No				

Merger and r-process nucleosynthesis

Likely successful for typical binary merger models

Kilonova/macronova

Ejected material contain radioactive r-elements Their decay heat the ejecta Thermal photons try to diffuse from the ejecta But r-elements efficiently traps the photon inside Characteristic "kilonova"!

Kilonova/macronova characteristics

For spherical ejecta (Li-Paczynski 1998, also Arnett 1982) The peak luminosity: $L_{\text{peak}} \propto f \kappa^{-1/2} M^{1/2} v^{1/2}$ The peak time : $t_{\text{peak}} \propto \kappa^{1/2} M^{1/2} v^{-1/2}$

Heating efficiency f and opacity κ – microphysics particularly, r-process elements have high opacity Ejecta mass M and ejecta velocity ν – macrophysics small mass and high velocity (vs supernovae)

High opacity of the lanthanides

The fraction of synthesized lanthanides is the key The opacity changes by a few orders by magnitude - interaction cross section with photons per mass

Formed if Ye<~0.25 lanthanide rich Not if Ye>~0.25 lanthanide free

Too many lines of lanthanides

A bunch of energy levels -> complex line structures -> very frequent interaction -> very high opacity But modeling is incomplete (quantum many-body)

AT 2017gfo

Largely consistent w/ theoretical prediction

In particular, ~10day time scales in infrared bands:

Polarization

Ejecta geometry and atomic distribution could be inferred from polarization due to electron scattering

This is possible only if both light and heavy r-process elements exist in the ejecta

No polarization for AT 2017gfo [Covino et al. 2017]

Probe into the atomic distribution

~1% polarization is possible for binary neutron stars

Future of the kilonova ejecta

The ejecta with $0.03 - 0.05M_{\odot}$ and 0.1 - 0.2c will eventually collide with the interstellar medium

-> a system very similar to supernova remnants

Broadband emission is expected (mainly radio) Gamma-rays are possible for (very) extreme cases e.g., with magnetars

Cosmic-ray acceleration?

The velocity of the r-process-enriched merger ejecta is larger by an order of magnitude than supernova's

If all the r-process elements are produced in mergers, they must be born with two order-of-magnitude larger kinetic energy (per mass) than elements from the supernova explosion, e.g., iron

Then: r-process cosmic rays could be highly abundant as far as the reverse-shock acceleration is efficient

Observed cosmic-ray composition

No selective r-process enhancement is observed

"solar composition"

Enhancement for

- refractory elements
 that tend to form dusts
- all the heavy elements(or for large A/Q ?)

Limit on acceleration efficiency

Particle acceleration and emission may be inefficient in the reverse shock of the kilonova ejecta

