New Perspectives on Dense QCD Matter

References:

[1] <u>Y. Fujimoto</u>, S. Reddy, PRD 109 (2024) (Editors' Suggestion), arXiv:2310.09427. [2] <u>Y. Fujimoto</u>, K. Fukushima, L. McLerran, M. Praszalowicz, PRL 129 (2022), arXiv:2207.06753. [3] <u>Y. Fujimoto</u>, T. Kojo, L. McLerran, PRL132 (2024), arXiv:2306.04304; arXiv:2410.22758.

January 29, 2025 - Nucleosynthesis and Evolution of Neutron Stars @ YITP, Kyoto U

Neutron stars: why do we study now?

But, now is the most exciting period because of...

- Recent advances in astrophysics
- Recent advances in QCD fundamental theory of the strong interaction

Yuki Fujimoto (Berkeley)

Neutron star study is very old research field.

Recent advances in QCD at high densities

- Nuclear EoS from chiral effective field theory (χ EFT)
- Lattice simulations of QCD at finite isospin density
- Hadron-hadron interaction from the lattice QCD

Yuki Fujimoto (Berkeley)

- Higher-order computations of perturbative QCD (pQCD) EoS

Freedman,McLerran(1977); Baluni(1978); Kurkela,Romatschke,Vuorinen (2009); Gorda, Säppi, Paatelainen, Seppänen, Österman, Schicho, Navarrete (2018-)

Tews,Krüger,Hebeler,Schwenk(2013);Drischler,Furnstahl,Melendez,Philips(2020); Keller, Hebeler, Schwenk (2022); ... many others

Kogut, Sinclair (2002); NPLQCD collaboration (2007-); Brandt, Chelnokov, Cuteri, Endrodi, ... (2014-);

Lattice simulations of two-color QCD at finite baryon density

e.g. lida, Itou, Murakami, Suenaga (2024)

HAL QCD collaboration (2006-)

- Hamiltonian lattice simulations of QCD in (1+1)-dimensions

Hayata, Hidaka, Nishimura (2023)

3 /36

Recent advances in QCD at high densities

- Nuclear EoS from chiral effective field theory (χ EFT)
- Lattice simulations of QCD at finite isospin density
- Hadron-hadron interaction from the lattice QCD

Yuki Fujimoto (Berkeley)

- Higher-order computations of perturbative QCD (pQCD) EoS

Freedman,McLerran(1977); Baluni(1978); Kurkela,Romatschke,Vuorinen (2009); Gorda, Säppi, Paatelainen, Seppänen, Österman, Schicho, Navarrete (2018-)

Tews,Krüger,Hebeler,Schwenk(2013);Drischler,Furnstahl,Melendez,Philips(2020); Keller, Hebeler, Schwenk (2022); ... many others

Kogut, Sinclair (2002); NPLQCD collaboration (2007-); Brandt, Chelnokov, Cuteri, Endrodi, ... (2014-);

Lattice simulations of two-color QCD at finite baryon density

e.g. lida, Itou, Murakami, Suenaga (2024)

HAL QCD collaboration (2006-)

- Hamiltonian lattice simulations of QCD in (1+1)-dimensions

Hayata, Hidaka, Nishimura (2023)

4 /36

Yuki Fujimoto (Berkeley)

7 /36

1. Bounds on the EoS from QCD inequality and lattice data

2. Role of QCD in constraining the EoS

3. Inspiration from large-Nc QCD: **Quarkyonic matter - duality between baryons and quarks**

1. Bounds on the EoS from QCD inequality and lattice data

2. Role of QCD in constraining the EoS

3. Inspiration from large-Nc QCD:

Quarkyonic matter - duality between baryons and quarks

QCD at finite isospin density

- No sign problem \rightarrow EoS can be measured on the lattice!
- Isospin chemical potential (conjugate to isospin density I_3): $\mu_u = \frac{\mu_I}{2}, \quad \mu_d = -\frac{\mu_I}{2} \dots$ Fermi surface of $u \& \bar{d}$
- Phase structure: Son, Stephanov (2000) $\left[\langle \bar{d}\gamma^5 u \rangle = 0 \right]$ BEC

 m_{π}

Yuki Fujimoto (Berkeley)

Alford, Kapustin, Wilczek (1999); Kogut, Sinclair (2002-); Beane, Detmold, Savage et al. (2007-); Endrodi et al. (2014-)...

Phase structure is totally different from QCD at finite baryon density

Cooper pairing BCS $\neq 0$

QCD at finite isospin density

Recent impact:

Yuki Fujimoto (Berkeley)

Abbott et al. (NPLQCD) (2023, 24)

EoS is calculated up to $\mu_I \sim 3$ GeV by lattice QCD in the continuum limit

What can we learn from this lattice data?

- Ground states of finite- μ_B QCD and finite- μ_I QCD are totally different \rightarrow Naive comparison of EoS is meaningless
- There are a ways to utilize the finite- μ_I lattice data: QCD inequality

Inequality among observables from path integrals Weingarten (1983); Witten (1983)

Inequality considered here:

Pressure of finite- μ_R QCD (what we want to know)

NB: this is for symmetric nuclear matter

Yuki Fujimoto (Berkeley)

QCD inequality for pressure $P \propto \log Z$: $P_B(\mu_B) \le P_I(\mu_I = \frac{2}{N_o}\mu_B)$

Pressure of finite- μ_I QCD (what we already know from lattice QCD)

> Cohen (2003); <u>Fujimoto</u>, Reddy (2023); see also: Moore, Gorda (2023)

14/36

Robust bounds on the EoS Fujimoto, Reddy (2023) Lattice data: Abbott et al. (NPLQCD) (2023, 24) Kurkela, Komoltsev (2021) 10 Excluded by Causality 10³ Pressure P [MeV/fm³] Lattice QCD Data 10² Heavy-ion Excluded by 10 Collisions Lattice QCD 10 3 10 10 10 Energy Density ε [MeV/fm³]

From - **Causality**: $dn_B/d\mu_B > n_B/\mu_B$ - Integral version of inequality: μ_B $d\mu n_B(\mu) \le P_I(2\mu_B/N_c),$

 $n_R(\mu_R)$ can be constrained

Then, from the relation $\varepsilon = -P + \mu_R n_R$

Robust bounds on the EoS

Yuki Fujimoto (Berkeley)

Lattice data: Abbott et al. (NPLQCD) (2023, 24)

1. Bounds on the EoS from QCD inequality and lattice data

2. Role of QCD in constraining the EoS

3. Inspiration from large-Nc QCD:

Quarkyonic matter - duality between baryons and quarks

Role of QCD in constraining the EoS

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022) - QCD input is useful in constraining EoS

The pQCD calculations lead

- Useful measure of conformation
- Conformal EoS may be a signature of quark matter

Yuki Fujimoto (Berkeley)

ds to the EoS:
$$P \approx \frac{1}{3}\varepsilon$$

... approximately conformal EoS

- The pQCD constraint requires all the EoS to approach this value

ality: **Trace anomaly**
$$\Delta = \frac{\varepsilon - 3P}{3\varepsilon}$$

See also: Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nättilä, Vuorinen (2023); Komoltsev, Somasundaram, Gorda, Kurkela, Margueron, Tews (2023)

18/36

Behavior of the trace anomaly

Trace anomaly
$$\Delta = \frac{\varepsilon - 3P}{3\varepsilon}$$

- 1) Role of QCD
- 2) Approximately conformal EoS in NS

Yuki Fujimoto (Berkeley)

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

Behavior of the trace anomaly

Trace anomaly
$$\Delta = \frac{\varepsilon - 3P}{3\varepsilon}$$

1) Role of QCD

Difference at high density \rightarrow QCD favors a soft EoS

2) Approximately conformal EoS in NS

Yuki Fujimoto (Berkeley)

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

Behavior of the trace anomaly

Trace anomaly
$$\Delta = \frac{\varepsilon - 3P}{3\varepsilon}$$

- 1) Role of QCD
- 2) Approximately conformal **EoS in NS**

QCD favors conformal EoS around the NS core density \rightarrow onset of quark matter?

Effect of QCD: softening in EoS

Speed of sound: $d\varepsilon$

Bayesian inference w/o pQCD constraint

Speed of sound V_s^2

Yuki Fujimoto (Berkeley)

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

Effect of QCD: softening in EoS

Speed of sound:
$$v_s^2 = \frac{dP}{d\varepsilon}$$

Bayesian inference w/pQCD constraint

Approximately conformal EoS ($P \approx \varepsilon/3$)

Yuki Fujimoto (Berkeley)

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

1. Bounds on the EoS from QCD inequality and lattice data

2. Role of QCD in constraining the EoS

3. Inspiration from large-Nc QCD: **Quarkyonic matter - duality between baryons and quarks**

Quark deconfinement at high density

Collins & Perry (1974): Naive picture of quark deconfinement

In weak-coupling regime at high density, quarks liberate

L00000

This is led by screening of the confinement potential $\mu_{B/}$

Quark deconfinement at high density

Collins & Perry (1974): Naive picture of quark deconfinement

In weak-coupling regime at high density, quarks liberate

This is led by screening of the confinement potential

EoS corresponding to the conventional picture:

Pressure P

 $\sim m_N$

Yuki Fujimoto (Berkeley)

Quark deconfinement at high density

Baym, Chin (1976); cf. Baym, Hatsuda, Kojo, Powell, Song, Takatsuka (2018)

Quark matter EoS (e.g. Bag model) Maxwell construction **1st-order** phase transition

Baryon chemical potential μ_{R}

EoS corresponding to the conventional picture:

Yuki Fujimoto (Berkeley)

Quark deconfinement at high density

Baym, Chin (1976); cf. Baym, Hatsuda, Kojo, Powell, Song, Takatsuka (2018)

Quark matter EoS (e.g. Bag model)

Maxwell construction **1st-order** hase transition

Baryon c potentia

Quark deconfinement at high density

Deconfinement at high density may not be that simple...

McLerran & Pisarski (2007): Quarks never deconfine in large- N_c QCD

... (de)confinement is never affected by quark medium!

Quark deconfinement at high density: duality Deconfinement at high density may not be that simple... McLerran & Pisarski (2007): Quarks never deconfine in large- N_c QCD

- ... (de)confinement is never affected by quark medium!
- Dense large-Nc QCD matter can be described either as
 - Confined baryons (because confining interaction is never screened)
 - Quarks (at densities where weak-coupling QCD is valid)

Yuki Fujimoto (Berkeley)

→ implies duality between <u>quark</u> and confined baryonic matter Quark yonic

EoS corresponding to the Quarkyonic picture:

 $\sim m_N$

Yuki Fujimoto (Berkeley)

Quark deconfinement at high density: duality

Baym, Hatsuda, Kojo, Powell, Song, Takatsuka (2018); McLerran, Reddy (2018)

> **Dual Quarkyonic regime** (crossover)

Baryon chemical potential μ_B

QM EoS

Duality in Fermi gas model Kojo (2021); Fujimoto, Kojo, McLerran, PRL 132 (2023)

Implement duality in Fermi gas model (= simultaneous description in terms of baryons & quarks)

Fermi gas model w/ an explicit duality $\varepsilon = \int_{k} E_{\mathrm{B}}(k) f_{\mathrm{B}}(k) = \int_{k} E_{\mathrm{Q}}(q) f_{\mathrm{Q}}(q)$ $n_{\rm B} = \int_{k} f_{\rm B}(k) = \int_{a} f_{\rm Q}(q)$

Modeling of confinement: $f_{\mathbf{Q}}(q) = \int_{k} \varphi \left(q - \frac{k}{N_{c}} \right) f_{\mathbf{B}}(k)$

 $N_{\rm c}$ Ideal dual Quarkyonic model \rightarrow Find a solution for $f_{\rm B}$ and $f_{\rm O}$ with minimum ε at a given n_B

k

Yuki Fujimoto (Berkeley)

$$0 \leq f_{\mathrm{B},\mathrm{Q}} \leq 1$$
 : Pauli exclusion
 $E_{\mathrm{B}}(k) = \sqrt{k^2 + M_N^2}$: ideal baryon dispersion re

lation

32/36

Solution of the dual model of Quarkyonic matter Kojo (2021); Fujimoto, Kojo, McLerran, PRL 132 (2023)

At low density...

Solution of the dual model of Quarkyonic matter Fujimoto, Kojo, McLerran, PRL 132 (2023)

At sufficiently high density...

Favors crossover rather than 1st-order phase transition Fujimoto, Kojo, McLerran (2023)

A partial occupation of available baryon phase space leads to large sound speed:

$$v_s^2 = \frac{n_{\rm B}}{\mu_{\rm B} dn_{\rm B} / d\mu_{\rm B}} \rightarrow$$

If baryons have underoccupied state, the change in density is small while the change in Fermi energy ($\sim k_F$) is large k K_F

 \rightarrow Favor the crossover over first-order phase transition ($v_s^2 = 0$)

Yuki Fujimoto (Berkeley)

$$\frac{\delta\mu_{\rm B}}{\mu_{\rm B}} \sim v_s^2 \frac{\delta n_{\rm B}}{n_{\rm B}}$$

35/36

- QCD at finite isospin density: a useful nonperturbative piece of information on the lattice
- QCD inequality: one can put bound on the EoS of baryonic QCD from the isospin lattice-QCD
- Role of QCD: Useful in constraining neutron-star EoS. Favors approximately conformal EoS
- Quarkyonic matter: duality between baryons and weakly-coupled quarks from large-Nc \rightarrow nontrivial modification in FD distribution, i.e., suppression in low-momentum baryonic states

OCD inequality: derivation Cohen (2003); <u>Fujimoto</u>, Reddy (2023); see also: Moore, Gorda (2023)

$$QCD_{I}: Z_{I}(\mu_{I}) = \int [dA] \det \mathcal{D}(\frac{\mu_{I}}{2}) \det \mathcal{D}(-\frac{\mu_{I}}{2})e^{-S_{G}} = \int [dA] \left| \det \mathcal{D}(\frac{\mu_{I}}{2}) \right|^{2} e^{-S_{G}}$$

$$u \operatorname{quark} d \operatorname{quark} \int \operatorname{charge conjugation symmetry} \mu_{B} \rightarrow \int [dA] \det \mathcal{D}(\frac{\mu_{B}}{N_{c}}) \det \mathcal{D}(\frac{\mu_{B}}{N_{c}}) e^{-S_{G}} = \int [dA] \operatorname{Re} \left[\det \mathcal{D}(\frac{\mu_{B}}{N_{c}}) \right]^{2} e^{-S_{G}}$$
Note: this is **isospin symmetric** because there is no isospin imbalance

- From the relation $\operatorname{Re} z^2 \leq |z^2| = |z|^2$: $Z_B(\mu_B) \leq \left[dA \right] \det \mathcal{D}(\frac{\mu_B}{N_a})$

Yuki Fujimoto (Berkeley)

- Dirac operator: $\mathscr{D}(\mu) \equiv \gamma^{\mu} D_{\mu} + m - \mu \gamma^{0}$, property: det $\mathscr{D}(-\mu) = [\det \mathscr{D}(\mu)]^{*}$

$$\left| \frac{2}{N_c} \right|^2 e^{-S_G} = Z_I \left(\mu_I = \frac{2}{N_c} \mu_B \right)$$

Direct use of QCD inequality

Yuki Fujimoto (Berkeley)

Lattice data: Abbott et al. (2023); Fujimoto, Reddy (2023)

Komoltsev, Kurkela (2021); Fujimoto, Reddy (2023)

Yuki Fujimoto (Berkeley)

Bounds on $n_R(\mu_R)$ **Properties** $n_B(\mu_B)$ **must satisfy**: Stability: $\frac{d^2 P}{d\mu_B^2} \ge 0 \implies \frac{dn_B}{d\mu_B} \ge 0$ ② Causality $v_s^2 \le 1$: $v_s^2 = \frac{n_B}{\mu_B} \frac{d\mu_B}{dn_B} \le 1 \implies \frac{dn_B}{d\mu_B} \ge \frac{n_B}{\mu_B}$ QCD inequality on the integral: $(\mathbf{3})$ $d\mu' n_B(\mu') \leq P_I(\mu_I = \frac{2}{N_c}\mu_B)$ $J\mu_{\rm sat}$ 3000 Lower bound of the integral must be specified fix it to the empirical saturation property

Bounds on $P(\varepsilon)$

Isenthalpic line: $h = \mu_R n_R = \varepsilon + P = \text{const}$

Yuki Fujimoto (Berkeley)

Komoltsev, Kurkela (2021); <u>Fujimoto</u>, Reddy (2023)

by changing value of h, the trajectories of P_{\min} (P_{\max}) gives the lower (upper) bound for $P(\varepsilon)$

Yuki Fujimoto (Berkeley)

42/36