Experiments on Three-Nucleon Forces - recent topics -

Institute of Science Tokyo / RIKEN Nishina Center

Yukawa Institute, Kyoto January 29th, 2025

Kimiko Sekiguchi

Frontier of Nuclear Force Study

History **1935** Yukawa's meson theory - Two-Nucleon Forces (2NFs) 1990's Realistic Modern Nucleon-Nucleon Potentials (CD Bonn, Argonne v18, Nijmegen)

 π,ρ,ω

Before Three-Nucleon Forces ...

Nuclear Force ~ Yukawa's Idea ~

Yukawa's Meson Theory Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

Nuclear force is explained by exchanging a 'virtual particle' (meson) between two nucleons.

Scanned at the American Institute of Physics

Nuclear Force

Yukawa's Meson Theory Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

Realistic Modern Nucleon-Nucleon Potentials, 1990's e.g. CD Bonn, Argonne V₁₈, Nijmegen I, and II, reproduce 4000 NN scattering exp. data with high precision, χ^2 /datum~ 1.

Three-Nucleon Force (3NF) - nuclear forces acting in systems more than A > 2 nucleons -• $\geq 2\pi$ -exchange 3NF : Miyazawa 1957 Fujita-Miyazawa 3NF Prog. Theor. Phys. 17, 360 (1957) - Main Ingredients : Δ -isobar excitations

in the intermediate

 Δ^{+-}

 $\frac{\Delta}{\Delta^{+}}$

Three-Nucleon Force (3NF) - nuclear forces acting in systems more than A > 2 nucleons -

Where ?

Ab Initio Calculations for Light Nuclei ($A \leq 12$): ⁴He to ¹²C

Green's Function Monte Carlo No-Core Shell Model etc..

- 3NF effects in B.E.
- **10-25%**
- Attractive

Note :

Isospin T=3/2 3NFs (three-neutron force) play important roles to explain B.E. in neutron rich nuclei.

3NFs in A > 3 - (1) -

Ab Initio Calculations for Light Nuclei ($A \leq 12$): ⁴He to ¹²C

Green's Function Monte Carlo **No-Core Shell Model** etc..

- 3NF effects in B.E.
- **10-25%**
- Attractive

Note :

Isospin T=3/2 3NFs (three-neutron force) play important roles to explain B.E. in neutron rich nuclei.

3NFs in A > 3 - (1) -

- Coupled cluster theory
- Nuclear Lattice Simulations

Heavy Mass Nuclei (*up to* ²⁰⁸Pb) 3NFs provide key mechanisms, - Shell-evolution,

3NFs in A>3 - (1) -

RIKEN RIBF

Isospin T=3/2 3NFs

High Resolutio

Target Stations 500 MeV

Protons

8Pb

sms,

3NFs in A>3 - (1) -

Experiment

FRIB

12

40

50

Neutron number N

3NFs in Infinite Nuclei - Neutron Star -

"Endpoint of stellar evolution"

Supernovae **Explosion**

Discovery of Heaviest Neutron Star with 2 solar-mass M_{sun} (PSR J1614-2230)

- 3NF
 - Short & Repulsive
 - Large effects at high density.

3NFs in A>3 - (2)

NNN + NNA in Infinite Nuclei

3NFs in A>3 - (2)

NNN + NNA in Infinite Nuclei

• 3NF is a key to understand nuclear phenomena quantitatively. • How to constrain the properties of 3NF?

Two & Three-Nucleon Force

Few-Nucleon Systems How to approach Three-Nucleon Forces ?

Realistic 2NFs : with high precision, $\chi^2 \sim 1$.

3. High Precision Experiment

e.g. Our experiment

Extract information of Three-Nucleon Forces

- **Direct Comparison between Theory and Experiment**
 - 1. Exact Solution of Three-Nucleon System
 - Faddeev Theory : Exact solution of three-body systems
 - 2. Establishment of Two-Nucleon Forces
 - reproduce 4000 NN scattering exp. data

Triton (³H) Binding Energy

Triton (³H)

- A=3 (Z=1, N=2)
- 2NF provides less binding energies

by $0.5 \sim 1 \text{ MeV}$.

- 3NF fill the gap between the data and the calculations based on 2NFs.
- The cut-off Λ is determined to reproduce ³H binding energy.

$$F_{\pi NN}(q^2) = \frac{\Lambda^2 - m_\pi^2}{\Lambda + q^2}$$

First results of Faddeev calculations

- C.R. Chen, G. L. Payne, J. L. Friar and B. F. Gibson, Phys. Rev. C 33, 1740 (1986)
- T. Sasakawa, and S. Ishikawa, Few-Body Syst. 1, 3 (1986)

Potential	$E_B [\mathrm{MeV}]$	$E_B [\mathrm{MeV}]$	Λ/m_{π}
	$(w/o \ 3NF)$	(with 3NF)	
CDBonn	7.953	8.483	4.856
AV18	7.576	8.479	5.215
Nijm I	7.731	8.480	5.147
Nijm II	7.709	8.477	4.990
Nijm 93	7.664	8.480	5.207
Exp.	8.48	1821(4) [MeV]	

A. Nogga et al., Phys. Rev. C65, 054003 (2002).

Three-Nucleon Scattering

a good probe to study the dynamical aspects of 3NFs.

> ✓ Momentum dependence (R-dependence) ✓ Spin-dependence

Fourier Transform of Nuclear Potential

 $R \sim a$ few fm $q \sim 200 \text{ MeV/c}$ $E_{\rm lab.} \sim 100 {\rm MeV/A}$

 $qR \sim \hbar$

One can change R by adjusting Elab.

 $\frac{20}{20}$

Nucleon-Deuteron Scattering - 3N Scattering -

Predictions by H. Witala et al. (1998) Cross Section minimum for Nd Scattering at \sim 100 MeV/nucleon

Where is the hot spot for 3NFs?

Nd Scattering at Low Energies ($E \leq 30$ MeV/A)²²

 Weigh precision data are explained by Faddeev calculations based on 2NF.
 (Exception : A_y, iT₁₁)

No signatures of 3NF

Exp. Data from Kyushu, TUNL, Cologne etc..

W. Glöckle et al., Phys. Rep. 274, 107 (1996).

deuteron-nucleon scattering at ~100 MeV/nucleon

deuteron proton : 1 neutron : 1

RIKEN RI Beam Factory (RIBF) Polarized deuteron beam

- acceleration by AVF+RRC : 65-135 MeV/nucleon
- acceleration by AVF+RRC+SRC : 190-300 MeV/nucleon
- polarization : 60-80% of theoretical maximum values
- Beam Intensity : < 100 nA

RCNP, Osaka University

- Polarized *p* beam : 10 420 MeV/nucleon

Differential Cross section

2NF (CDBonn, AV18, Nijmegen I,II) : Large discrepancy in Cross Section Minimum (~30%)

 2π -exchange 3NFs (Tucson-Melbourne, : First Clear Signatures of 3NF

Urbana IX) : Good Agreement
effects in 3-Nucleon Scattering

Spin Observables

Analyzing Powers

K. Sekiguchi et al. PRC 65, 034003 (2002)

29

Energy Dependence

Energy Dependent Study for *dp* Scattering - Cross Section & Analyzing Powers -

K. Hatanaka et al., Phys. Rev. C. 66, 044002 (2002) Y. Maeda et al., Phys. Rev. C 76, 014004 (2007) K. S. et al., Phys. Rev. C 83, 061001 (2011) K. S. et al., Phys. Rev. C 89, 064007 (2014)

Summary of Results of Comparison for *dp* elastic scattering

- Cross section at ~100 MeV/nucleon
 - First clear signature of 3NF effects in 3N scattering
 - Magnitudes of 3NFs is O.K. .
- Spin observables
 - Not always described by 2π -3NFs
 - Defects of spin-dependent parts of 3NFs
- At higher energies ...
 - Serious discrepancy at backward angles
 - Short Range 3NFs are required.

Nd Elastic Scattering Data at Intermediate Energies

pd and nd Elastic Scattering at 65-400 MeV/nucleon

Observable	100	200	300	400
$rac{d\sigma}{d\Omega}$				•
$\begin{vmatrix} \vec{p} & A_y^{p} \\ \vec{n} & A_y^{n} \end{vmatrix}$			•	•
$ \vec{d} iT_{11} \\ T_{20} \\ T_{22} \\ T_{21} $				
$\vec{p} \rightarrow \vec{p} K_y^{y'}$ $K_x^{x'}$ $K_x^{z'}$ $K_z^{x'}$ $K_z^{x'}$	π thr	eshold		
$\vec{d} \rightarrow \vec{p} K_y^{y'}$ $K_{xx}^{y'}$ $K_{yy}^{y'}$ $K_{yy}^{y'}$ $K_{xz}^{y'}$				
$\vec{p} \rightarrow \vec{d} K_y^{y'}$ $\vec{p} \vec{d} C$	V			•
$\begin{vmatrix} pa & C_{i,j} \\ & C_{ij,k} \end{vmatrix}$				

~2025

• High precision data set of $d\sigma/d\Omega$ & Analyzing Powers from RIKEN, RCNP, KVI, IUCF, LANSCE etc. After 90 Years of Yukawa's Meson Thory (1935) & After **68** Years of Fujita-Miyazawa 3NF (1957) Quantitative discussions on 3NFs start via Theor. & Exp. .

Recent Progress and Future Aspects

So far ...

Nucleon-Deuteron Scattering at ~100 MeV/nucleon

- First Evidence of 3NF effects
- Defects of existing 3NF models

From here > Determine 3NFs based on χEFT Nuclear Potential High-precision measurement of Spin Correlation Coefficients Proton-³He Scattering at \sim 100 MeV/N : New Probe of 3NF Study > 3NFs of isospin channel of T=3/2 First Step from Few to Many

- Deuteron-Proton Scattering at ~100 MeV/N : Golden window of 3NFs

Chiral EFT Nuclear Force & dp elastic scattering

 $\simeq \chi EFT$ 2NFs have achieved to high-precision.

5th order of NN potentials (N4LO⁺) reproduce pp(np) data with χ^2 /datum=1.00

P. Reinert, H. Krebs, E. Epelbaum EPJA 54, 86 (2018)

Chiral EFT Nuclear Force & dp elastic scattering

dp elastic scattering data show necessities of the N4LO 3NFs.

Cross section minimum region for *dp* elastic scattering at $\sim 100 \text{MeV/nucleon}$ is "Golden window" for the N4LO 3NFs.

LENPIC collaboration, Phys. Rev. C 98, 014002 (2018)

New Experiment at RIKEN **Measurement of Spin Correlation Coefficients** for *dp* elastic scattering at ~ 100 MeV/nucleon

pd and nd Elastic Scattering at 65-400 MeV/nucleon 200 100 300 400 Observable $rac{d\sigma}{d\Omega}$ A_y^p \vec{p} \vec{n} A_y^n \overrightarrow{d} iT_1 T_{20} T_{22} T_{21} $\vec{p} \rightarrow \vec{p}$ $K_x^{x'}K_y^{y'}$ $K_{\boldsymbol{x}}^{\boldsymbol{z}'}K_{\boldsymbol{z}}^{\boldsymbol{x}'}K_{\boldsymbol{z}}^{\boldsymbol{z}'}$ $\vec{d} \rightarrow \vec{p}$ $K_{yy}^{y'}$ π threshold $K_{xx}^{y'} K_{xz}^{y'}$ $\vec{p} \rightarrow \vec{d} K_{u}^{y'}$ $\vec{p} \vec{d}$ $C_{x,x}$ $C_{y,y}$ $C_{z,x}$ $C_{x,z}$ $C_{z,z}$ $C_{xx,y} C_{yy,y}$ $C_{xz,y} C_{yz,x} C_{xy,x}$

for investigation of N4LO 3NFs - determination of LECs of N4LO 3NFs from *dp* scattering data

+ new detector system

p-³He scattering

Search Approach iso-spin dependence of 3NFs

T=3/2 3NFs

for neutron-rich nuclei, neutron star

4-nucleon scattering

First Step from Few to Many

Larger effects of 3NFs ?

4NF effects

2N system

3N system

4N system

MN system 🖄

p-³He scattering

Theory in Progress

Calculations above 4-nucleon breakup threshold energy

open new possibilities of 3NF study in 4N-scattering.

Discrepancies in cross section minimum at higher energies

New rooms for 3NF study

44

p threshold energy in 4N-scattering.

at 5.54 MeV

No signature of 3NFs in cross section
Ay(p) puzzle : 3NFs sensitive to p-shell nuclei improve the agreement to the data.

How about spin observables at higher energy?

• Pol.³He gas target : Alkali-Hybrid SEOP type

polarization : 30-40% as of 2018 (beam on target)

Data of $p+^{3}$ He at Intermediate Energies

A.Watanabe et al., Phys. Rev. C 103, 044001 (2021) A.Watanabe et al., Phys. Rev. C 106, 054002 (2022)

4N calculations by A. Deltuva

Data of *p*+³He at Intermediate Energies

A.Watanabe et al., Phys. Rev. C 103, 044001 (2021) A.Watanabe et al., Phys. Rev. C 106, 054002 (2022)

4N calculations by A. Deltuva

Analysis of p-³He elastic scattering amplitudes

 $\boldsymbol{M}\left(\theta_{\text{c.m.}}\right) = F_0\left(\theta_{\text{c.m.}}\right) + \left(\boldsymbol{s}_p \cdot \boldsymbol{s}_h\right) F_\sigma\left(\theta_{\text{c.m.}}\right) + \left(\boldsymbol{s}_p \cdot \boldsymbol{n}\right) F_p\left(\theta_{\text{c.m.}}\right) + \left(\boldsymbol{s}_h \cdot \boldsymbol{n}\right) F_h\left(\theta_{\text{c.m.}}\right)$ + $\left(\hat{S}_T(\boldsymbol{\ell}) - \hat{S}_T(\boldsymbol{m})\right) F_{\ell m} \left(\theta_{\mathrm{c.m.}}\right) + \hat{S}_T(\boldsymbol{n}) F_n \left(\theta_{\mathrm{c.m.}}\right)$ $\frac{d\sigma}{d\Omega} = |F_0|^2 + \frac{3}{16} |F_\sigma|^2 + \frac{1}{4} \left(|F_p|^2 + |F_h|^2 \right) + 18 |F_{\ell m}|^2 + 6 |F_n|^2$ vector $(N^{[1]})$ tensor $(N^{[2]})$ $\frac{d\sigma}{d\Omega}$ [mb/sr] 10² (b) *d+p* @135 MeV/u 10 $N^{[2]}$ 10⁻¹ 10^{-2} 40 20 60 80 100 120 140 160 180 $\theta_{\rm c.m.}$ [deg] Main : tensor & vector components Main : vector components at the cross section minimum at the cross section minimum

Ref. S. Ishikawa, M. Tanifuji, Y. Iseri, and Y. Yamamoto, PRC 69, 034001; 72, 027601.

JST ERATO Three-Nucleon Force Project

Polarization Experiment - Few-Nucleon Systems-

Ultra Cold Atom Experiment

Establishment of Quantum Many-Body Simulation Tool of Nuclear Phenomena with High-predictive Power

Term Oct. 2023-Mar.2029

TOMOE

Frontiers of nuclear force study to understand nuclear forces from quarks

- a few, many- and infinite nucleon systems -

- in Progress of Experiment
 - Deuteron-Proton Scattering : Spin Correlation Coefficients at 100 MeV Proton-³He Scattering at $\sim 100 \text{ MeV}$

> 3NFs of isospin channel of T=3/2

Summary

- To understand nuclear forces is a hot topic of nuclear physics.

 - to understand nuclei/matter from NN & 3N-forces
- 3NFs are key elements to fully understand nuclear properties;
- *deuteron-proton* scattering at ~100 MeV/nucleon inspires quantitative discussions of 3NFs.

- > Determine 3NFs based on xEFT Nuclear Potential