Long-term supernova simulation with axion-like particles Masamitsu Mori National astronomical observatory of Japan

Supernova

- The most energetic explosion in the universe
- Neutrinos play a key role and 99% of the energy emitted as neutrinos
 - Important to observe supernova neutrinos
- Neutrino emission lasts over 1min.
 - Important to calculate for a long term

Axion-like particles

- Beyond standard model particle introduced to solve the strong CP problem (Axion)
- Pseudo-scalar particles like an axion
 - Axion-like particles (ALPs)
- Effects of ALPs on supernovae
 - Enhance heating (Early phase)
 - Accelerate neutrino cooling (Late phase)
- In this study
- To calculate supernovae with ALPs for a long term
- To predict neutrino events in the case that ALPs exist

Simulation

- Simulator: GR1D
 - ♦ 1D
 - General relativity
 - Neutrino radiation hydro
- Implemented with ALP cooling
 - $\begin{array}{c} \bullet \text{ Axion creation process} \\ a & -- \swarrow \gamma & \gamma & \gamma & \gamma & --- a \\ \gamma & p & E \\ \gamma & p & p \\ \end{array}$

Photon coalescence

Primakov effect

Results

10kpc with Super-Kamiokande

Shockwave

Cumulative events

Event number

Cumulative events

Axion mass: 10 MeV Coupling Constants 6.0 × 10⁻⁹GeV~1.0 × 10⁻⁹GeV

EOS: DD2 Dolotion

- Relativistic mean field theory
- Progenitor: 9.6 M_{\odot}

Conclusion

 We can detect ALPs from long-term supernova neutrinos