

DEGENERATE NEUTRON CAPTURE RATES IN NEUTRON STAR BINARY SYSTEMS

WE WILL INVESTIGATE NS-BH MERGERS AND X-RAY BINARIES

- Neutron star paired with low mass companion
- Large flux of proton rich matter interacts with NS atmosphere/crust
- Reactions produce X-Ray bursts and change the composition of the crust

NS-BH system gradually lose energy due to gravitational wave emission

 During the last phase of coalescence, neutron rich matter is violently ejected

 Provides the requisite free neutron density and temperature for the R-process

RP-PROCESS ASHES ACT AS INITIAL CONDITIONS FOR DEGENERATE NEUTRON CAPTURE CHAINS

- Neutron star is provided "fuel" via accretion from a companion star, kickstarting rp-process
- rp-process by-products (ashes) are relatively stable nuclei, dragged further down the crust¹
- Ashes include ⁵²Fe, ⁵⁶Ni and ⁶⁴Ge

rp-process rapid proton captures $X(p,\gamma)Y$

1 - Hendrik Schatz *et al* 1999 *ApJ* **524** 1014

$$\frac{dN_{Al25}}{dt} = N_p N_{24\text{Mg}} \langle \sigma v \rangle_{24\text{Mg}(p,\gamma)} + N_n N_{24\text{Al}} \langle \sigma v \rangle_{24\text{Al}(n,\gamma)} + \dots \\ - \left[N_p N_{25\text{Al}} \langle \sigma v \rangle_{25\text{Al}(p,\gamma)} + N_{25\text{Al}} \lambda_{25\text{Al}(\gamma,n)} + \dots \right]$$

FREE NEUTRONS ARE DEGENERATE AT THERMODYNAMIC CONDITIONS RELEVANT TO OUR SYSTEMS Gas of neutrons are incredibly dense
 we account for degenerate states

• Assuming T = 0.1 GK, neutron thermal wavelength ~160fm, while at a number density of $1 \times 10^{-4} fm^{-3}$ or ~ $2 \times 10^{12} g/cm^3$ neutron spacing ~ 20 fm.

• Readily available architecture assumes explosive conditions

What even is a neutron capture rate?

n

What even is a neutron capture rate?

What even is a neutron capture rate?

$$\langle \sigma v \rangle = E$$

$$\langle \sigma v \rangle = E$$

 ${}^{A+1}_Z X^*$

$$\langle \sigma v \rangle = E$$

 $_Z^{A+1}X$

$$\langle \sigma v \rangle = E \sigma(E)$$

 $_{Z}^{A+1}X$

• 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • • • • • 🔘 • • 🔘 •

\bigcirc \bigcirc () \bigcirc \bigcirc ()0 0 \circ \circ \circ \bigcirc \bigcirc $\left(\right)$ \bigcirc 0 0 $\circ \circ \circ \circ$ $\left(\right)$ ()()0 0 0 0 \bigcirc \bigcirc $\left(\right)$ () \bigcirc 0 0 0 }

• 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • • • 🔘 •

• 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • 🔘 • • • 🔘 •

0 \bigcirc \circ \circ \bigcirc \bigcirc () \bigcirc 0 0 0 0 \circ \circ \circ $\left(\right)$ ()0 $\circ \circ \circ \circ$ $\left(\right)$ () \bigcirc \bigcirc 0 0 0 \bigcirc () \bigcirc ()()0 0 0 \bigcirc 3 ()()

\bigcirc () \bigcirc \bigcirc ()() \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ()() \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc () \bigcirc () \bigcirc \bigcirc ()() \bigcirc ()()()()()()()()

$\langle \sigma v \rangle = E \sigma(E) f(E, T, \mu)$

()()()()()()()() \bigcirc \bigcirc \bigcirc () \bigcirc ()() \bigcirc () \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc () \bigcirc \bigcirc \bigcirc ()()()()() \bigcirc \bigcirc ()()()

$\langle \sigma v \rangle = E \sigma(E) f(E, T, \mu)$

$$\langle \sigma v \rangle = \int_0^\infty E \sigma(E) f(E, T, \mu) dE$$

$$\langle \sigma v \rangle = \sqrt{\frac{2}{m}} \frac{1}{N} \int_0^\infty E \sigma(E) f(E, T, \mu) dE$$

$$\langle \sigma v \rangle = \sqrt{\frac{2}{m}} \frac{1}{N} \int_0^\infty E \sigma(E) f(E,T,\mu) dE$$

$$\langle \sigma v \rangle = \sqrt{\frac{2}{m}} \frac{1}{N} \int_0^\infty E \sigma(E) f(E,T,\mu) dE$$

$$\langle \sigma v \rangle = \sqrt{\frac{2}{m}} \frac{1}{N} \int_{0}^{\infty} E\sigma(E) f(E, T, \mu) dE$$

$$[mb]$$

$$10^{-1}$$

$$10^{-2}$$

$$10^{-2}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$
Neutron Energy [MeV]

 σ

VARIATIONS IN THEORETICAL NUCLEAR INPUTS VIA TALYS

2 - Arjan Koning, Stephane Hilaire, Stephane Goriely Eur. Phys. J.A 59 (6) 131 (2023)

- For neutron rich nuclei, must rely on theoretical inputs
- TALYS² allows a multitude of models when calculating transmission coefficients for the cross section
- Determine the impact of mass model, level density, and gamma strength function on degenerate capture rates

TALYS INPUT VARIATIONS

γ-Strength Function	Level Density Model	Mass models
Kopecky-Uhl generalized Lorentzian	Constant temperature + Fermi gas model	Möller tables
Hartree-Fock BCS + QRPA	Back-shifted Fermi gas Model	Hartree-Fock-Bogolyubov using Skyrme Forces
Hartree-Fock-Bogolyubov + QRPA	Generalized super fluid model	Hartree-Fock-Bogolyubov using Gogny Forces
Goriely's Modified Lorentzian	Hartree-Fock Using Skyrme Force	
	Hartree-Fock-Bogolyubov (Skyrme Force) + Combinatorial method	

EVALUATE DEGENERACY IMPACT BY COMPARING MAX/MIN RATES

• For each nuclei, find the maximum and minimum rate for a given temperature, chemical potential

•
$$\bar{\zeta} = \frac{MAX\langle \sigma v \rangle}{MIN\langle \sigma v \rangle}$$

• From this, evaluate $\frac{\overline{\varsigma}_{FD}}{\overline{\varsigma}_{MB}}$ to investigate relative change due to degeneracy

>104 a) T = 1.5 GK $\mu_n = 0.5$ N - 10³ MeV A Ν - 10² $\bar{\varsigma}$ b) T = 0.2 GK- 10¹ N μ_n = 2.0 MeV L 10° N

B Knight, O L Caballero, H Schatz. 2024 J. Phys. G: Nucl. Part. Phys. 51 095201

 $\bar{\varsigma}_{FD}$ for degenerate captures with mass, γ -SF and LD model variations

B Knight, O L Caballero, H Schatz. 2024 J. Phys. G: Nucl. Part. Phys. 51 095201

B Knight, O L Caballero, H Schatz. 2024 J. Phys. G: Nucl. Part. Phys. 51 095201

B Knight, O L Caballero, H Schatz. 2024 J. Phys. G: Nucl. Part. Phys. 51 095201

BH-NS MERGER CONDITIONS ARE MUCH HOTTER, DENSER

- Explosive ejecta have much higher temperatures
- There is enough thermal energy to excited target nuclei changing reaction properties
- Free neutron density is also much higher -> larger neutron chemical potential

T [MeV]0.001

 $\left\{ \sigma_1 \right\} \left\{ \sigma_1 \right\} \left\{ \sigma_1 \right\} \left\{ \sigma_1 \right\}$ σ_0 σ_0 (σ_0) σ_0 $\sigma_0 \quad \{\sigma_1\} \{\sigma_1\} \{\sigma_1\} \{\sigma_1\}$ $\{\sigma_1\}\{\sigma_1\}$ (σ_0) σ_0

T [MeV]0.100

T [MeV]1.000

 $\sigma^*(E,T)$

$$\sigma^*(E,T) = \sum_{\nu} P^{\nu} \sigma_{\nu}(E)$$

 $\sigma^*(E,T) = \sum_{\nu} \frac{(2I_{\nu} + 1)e^{-E_x^{\nu}/T}}{G(T)} \sigma_{\nu}(E)$

218Po Cross Section 218Po Thermal Cross Section at different temperatures 10⁵ 10⁵ —— GS σ^* at T = 0.1 MeV σ^* at T = 0.5 MeV 104 104 -2.0 σ^* at T = 1.0 MeV —-- GS 10³ 10³ Excitation Energy [MeV] $rac{\sigma(E,T)}{G}$ [mb] 10² 10² σ [mb] 10¹ 10¹ 10⁰ 10^{0} -0.5 10^{-1} 10^{-1} 10^{-2} 10^{-2} -0.0 10⁻² 10^{-4} 10² 10^{-2} 10⁰ 10^{-4} 10-3 10^{-1} 10⁰ 10¹ 10-3 10^{-1} 10¹ E [MeV] E [MeV]

 $\sigma_0(E) = \sigma^*(E,T)$

$$10^{5} - \frac{218Po Cross Section}{10^{4}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.5 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0.1 \text{ MeV}} - \frac{\sigma^{*} at T = 0.1 \text{ MeV}}{\sigma^{*} at T = 0$$

$$\frac{1}{G(T)} \left((2I_0 + 1)\sigma_0 + (2I_1 + 1)\sigma_1 e^{\frac{-E_x^1}{T}} \right) = \sigma^*(E, T)$$

$$\frac{1}{G(T)} \left((2I_0 + 1)\sigma_0 + (2I_1 + 1)\sigma_1 e^{\frac{-E_x^1}{T}} + (2I_2 + 1)\sigma_2 e^{\frac{-E_x^2}{T}} \right) = \sigma^*(E, T)$$

$$\frac{1}{G(T)} \left((2I_0 + 1)\sigma_0 + (2I_1 + 1)\sigma_1 e^{\frac{-E_x^1}{T}} + (2I_2 + 1)\sigma_2 e^{\frac{-E_x^2}{T}} + \cdots \right) = \sigma^*(E, T)$$

$$\frac{1}{G(T)} \sum_{\nu=30} (2I_{\nu}+1)e^{\frac{-E_{x}^{\nu}}{T}} \sigma_{\nu}(E) = \sigma^{*}(E,T)$$

- Compare the stellar reaction rates to the classical counterpart via $R^* = \frac{\langle \sigma^* v \rangle_{FD}}{\langle \sigma^* v \rangle_{MB}}$
- Check the impact the stellar cross section has on degenerate rates via $\frac{\langle \sigma^* v \rangle_{FD}}{\langle \sigma v \rangle_{FD}}$
- Thermodynamic conditions are based on a merger between a $10~M_{\odot}$ BH and a $1.4~M_{\odot}~\rm NS.^4$

R* for Excited Targets during Merger Event

Elapsed time = 10.6148 ms, T = 3.16 MeV, μ = 23.96 MeV

- 3

 $log(R^*)$

R^{*} for Excited Targets during Merger Event

Elapsed time = 11.8755 ms, T = 0.9 MeV, μ = 6.32 MeV

- 3

Ν

Ν

/0

SUMMARY

- Degeneracy effects can neutron capture rates by multiple orders of magnitude.
- Reaction rate uncertainty due to nuclear physics input is further enhanced with neutron degeneracy
- Neutron degeneracy could provide a significant change to R-Process abundances in NS-BH mergers.

THANK YOU!

