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Background & Motivation



r-process in BNS Mergers

Matter is ejected via a variety of channels:

viscous heating
+

ν ν

νν
νν

tidal torques

shock heating

neutrino-driven wind

Top view: Side view:

Approximate timescale [ms]

1 10 100

viscous ejectadynamic ejecta

hot MNS

accretion disk

Ejecta of BNS mergers are hot, fast
expanding and very neutron rich.

↓

Onset of (strong) r-process nucleosynthesis
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Numerical simulations and observables

Hydrodynamical simulations

Gravitational waves

EOS of dense matter

+

sGRB

r-process nucleosynthesis

Kilonovae
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Nuclear networks: post-processing vs. in situ

A nuclear reaction network:

dYi
dt

=
∑

j
λjYj +

∑
jk

λjkYjYk + · · ·

Usual coupling to hydro simulations:
↓

Extract initial Ye, s,T along with history of ρ +
homologous expansion. Assume NSE at start.

↓
Post-process with nuclear network.

This method overly simplifies the density evolution and
neglects the influence of the nuclear heating on the

dynamics.

Image from [Magistrelli et al., 2024]

Proper coupling in situ to a long-lived simulation
reveals significant discrepancies with the post

processing approach.
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Reduced networks

Image adapted from Martinez-Pinedo

The (strong) r-process runs through all nuclei between
the valley of stability and the neutron drip line, for a total

of ∼ 7000/8000 DoF.

A typical hydrodynamics simulation has (several) 107

DoF. Coupling to a nuclear network would result in 1011

DoF.

Hand-point-right Infeasible!

Either simplify the hydro simulation (cf. previous slide) or
simplify the nuclear network, reducing the number of DoF

necessary.

↓

The BARONET code
(BetA flow ReactiOn NETwork)
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Techniques



(n,γ)↔(γ,n) equilibrium and beta flow

Original DoF: YA,Z → YA,Z = YZPA,Z, where YZ =
∑

A YA,Z and PA,Z = YA,Z/YZ.

(A,Z) + n←→ (A + 1,Z) + γ

Valid until nn is high enough, i.e. up to neutron freeze out (NFO).

µA,Z + µn = µA+1,Z

µA,Z = mA,Z + kBT log

[
nbYA,Z

G(T )A,Z

(
2π~2

mA,ZkBT

)3/2]

↓

PA+1,Z

PA,Z
=

1
2

nn
G(T )A+1,Z

G(T )A,Z

(
2π~2

mbkBT
A + 1

A

)3/2
exp

(Sn (A+1,Z)

kBT

)

Hand-point-right the PA,Z are known analytically, only the YZ must be evolved.
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beta flow

YZ evolve by reactions that change Z, but not A
→β− decays

dYA,Z

dt
= −YA,Z

3∑
i=0

λi
A,Z

+
3∑

i=0

∑
A

YA+i,Z−1λ
i
A+i,Z

↓

dYZ
dt

= −YZ
∑

A
PA,Z

3∑
i=0

λi
A,Z

+YZ−1

3∑
i=0

∑
A

PA+i,Z−1λ
i
A+i,Z

Need to sum over the PA,Z, which can be computed
analytically.

Evolution of the neutron fraction:

dYn

dt
= −Ynλ

0
n

+YZ

3∑
i=1

∑
A

iPA,Zλ
i
A,Z

−
1
τ
(χtot − 1)Yn

where χtot =
∑

A,Z AYZPA,Z ≡ 1 and τ ' 10−6 seconds.

The damping term is an effective way to recover missing
reactions and ensure mass conservation.

This ODE system is non-stiff and admits large(-ish)
timesteps.
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Post-NFO phase

(n,γ)↔(γ, n) equilibrium valid until NFO, e.g. Yn/Yseed ∼ 1 (Yseed =
∑

i 6=n Yi ). What to do beyond this point?

Keeping only β− decays, one can write:

dYA,Z

dt
= MYA,Z

with explicit solution

YA,Z(t) = exp(tM)YA,Z|initial

since M is time-independent.

“Initial data” for this formula is easily expressed as

YA,Z|initial = YZ|NFOPA,Z|NFO

but the PA,Z|NFO are easily computed on the fly by
storing TNFO and nn only.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

7000

8000

Sparsity pattern of M

exp(tM) is not trivial to
compute.

It is currently implemented as

M = VΛV−1 → exp(tM) = V exp(tΛ)V−1
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Preliminary results



Results: elemental abundances for “weak” r-process
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Results: elemental abundances for “strong” r-process
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Results: nuclear heating rate
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Heating rate as a function of time. Comparison data generated with SkyNet [Lippuner and Roberts, 2017]
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Conclusions

I BARONET relies on dominant reactions to reduce the number of DoF to a few hundred pre-NFO
I post-NFO evolution coupled to hydro needs further simplification (impose functional form of PA,Z)

Ongoing work:

I include neutron captures for Yn

I include fission for heavy elements
I develop a “reduced” NSE solver

I better characterization of neutron freeze out
I realistic thermalization
I extensive testing
I coupling to hydro simulations

Stay tuned…Thank you
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