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BACKGROUND & MOTIVATION



R-PROCESS IN BNS MERGERS

Matter is ejected via a variety of channels:

Ejecta of BNS mergers are hot, fast
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Ejecta of BNS mergers are hot, fast
expanding and very neutron rich.
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Onset of (strong) r-process nucleosynthesis
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NUMERICAL SIMULATIONS AND OBSERVABLES

EOS of dense matter Hydrodynamical simulations
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NUMERICAL SIMULATIONS AND OBSERVABLES

EOS of dense matter Hydrodynamical simulations
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SLyd EOS, ¢ = 1.33

11



NUMERICAL SIMULATIONS AND OBSERVABLES

EOS of dense matter Hydrodynamical simulations
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Kilonovae

SLyd EOS, ¢ = 1.33

r-process nucleosynthesis
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NUCLEAR NETWORKS: POST-PROCESSING VS. IN SITU

A nuclear reaction network:

dY;
j ik

Usual coupling to hydro simulations:

I
Extract initial Ye,s, T along with history of p +
homologous expansion. Assume NSE at start.

!

Post-process with nuclear network.
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NUCLEAR NETWORKS: POST-PROCESSING VS. IN SITU

A nuclear reaction network:

dY;
ir :Z)\j\/j—i-z}\jkyjyk-i-'”
j ik

Usual coupling to hydro simulations:

I
Extract initial Ye,s, T along with history of p +
homologous expansion. Assume NSE at start.

!

Post-process with nuclear network.
This method overly simplifies the density evolution and

neglects the influence of the nuclear heating on the
dynamics.
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Image from [Magistrelli et al., 2024]

Proper coupling in situ to a long-lived simulation
reveals significant discrepancies with the post
processing approach.



REDUCED NETWORKS
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Image adapted from Martinez-Pinedo

The (strong) r-process runs through all nuclei between
the valley of stability and the neutron drip line, for a total
of ~ 7000,/8000 DoF.
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A typical hydrodynamics simulation has (several) 107
DoF. Coupling to a nuclear network would result in 101!
DoF.

¥ Infeasible!
Either simplify the hydro simulation (cf. previous slide) or

simplify the nuclear network, reducing the number of DoF
necessary.
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REDUCED NETWORKS
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A typical hydrodynamics simulation has (several) 107
DoF. Coupling to a nuclear network would result in 101!
DoF.

¥ Infeasible!
Either simplify the hydro simulation (cf. previous slide) or

simplify the nuclear network, reducing the number of DoF
necessary.
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The BARONET code
(BetA flow ReactiOn NETwork)
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TECHNIQUES



(N,7)<>(7,N) EQUILIBRIUM AND BETA FLOW
Original DoF: YA,Z — YA,Z = YZPA,Zv where Yz = ZA YA,Z and PA,Z
(A, Z)+n+— (A+1,Z)+~

Valid until nn is high enough, i.e. up to neutron freeze out (NFO).

KA Z + Bn = BA+1,Z

ny YA,Z ( 27'l'h2 )3/2
G(T)Ayz mszkBT

ptaz = maz + ks T log
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(N,y)4>(7,N) EQUILIBRIUM AND BETA FLOW

Original DoF: YA,Z — YA,Z = YZPA,Zv where YZ = EA YA,Z and PA,Z = YA,Z/YZ-
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6" the P z are known analytically, only the Yz must be evolved.
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BETA FLOW

Yz evolve by reactions that change Z, but not A
—3~ decays

3
dYaz i
S =-Yaz) Mz
dt =
3 .
D> Yariz1Magiz
=0 A
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BETA FLOW

Yz evolve by reactions that change Z, but not A

—
dYaz 5.
- =*YA,ZZ)\5AZ ¥ =Y\
dt i—0 dt nNn
3 3 )
+ Z Z Yatiz—1Aatiz iPa,zAA 2
i=0 A
!
dy; 5.
dt =-VYz Z P,z Z ’\;\»Z where xtor =Y A 7 AYzPaz=1and 7~ 10~° seconds.
A i=0 ’
3 .
Y221 D> Pariz-1Mariz
i=0 A

Need to sum over the Pp 7, which can be computed
analytically.
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BETA FLOW

Yz evolve by reactions that change Z, but not A

—
dYaz 3. .
L= —Yaz) Mz
dt i=0 '
3 .
YD Yariz—1Mayiz
i=0 A

1

dys 5.

e NSO
t A i=0

3
Y221 D> Pariz-1Mariz
i=0 A

Need to sum over the Pp 7, which can be computed
analytically.
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dvs o
= —Y\

dt non
3

where xtot = EA,Z AYzPAyz =T and 7 ~ 10~° seconds.

The damping term is an effective way to recover missing
reactions and ensure mass conservation.
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BETA FLOW

Yz evolve by reactions that change Z, but not A

—
dYaz Ay
: :*YA,ZZ)\AZ
dt P
3 .
+ZZ Ya+i,z—1Aatiz
i—0 A

1

dys 5.

e NSO
t A i=0

3
Y221 D> Pariz-1Mariz
i=0 A

Need to sum over the Pp 7, which can be computed
analytically.
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Evolution of the neutron fraction:

dY,
dt

=—Yu\0

+Yz Z Z iPA,Z)‘L,Z

3
=1 A

i

1 .
(Xtot — 1) Yh

T

where xtot = EA,Z AYzPAyz =T and 7 ~ 10~° seconds.

The damping term is an effective way to recover missing
reactions and ensure mass conservation.

This ODE system is and admits

6,

11



PosT-NFO PHASE

(n,7)4>(~, n) equilibrium valid until NFO, e.g. Yn/Yseed ~ 1 (Yseed = Zi#n Y;). What to do beyond this point?

Keeping only 8~ decays, one can write:

dYaz

= MY,
dt AZ

with explicit solution

Ya,z(t) = exp(tM) Ya z[initial

since M is time-independent.
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“Initial data” for this formula is easily expressed as

Ya,zlinitial = YzInFo Pa,zINFO

but the Pa z|nro are easily computed on the fly by
storing Tnpo and ny

1000 2000 3000 4000 5000 6000 7000 8000

1000
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000

exp(tM) is not trivial to

5000

compute.

a000

Sparsity pattern of M

It is currently implemented as

M = VAV~! — exp(tM) = Vexp(tA)V !
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PRELIMINARY RESULTS



RESULTS: ELEMENTAL ABUNDANCES FOR “WEAK” R-PROCESS
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Y. = 0.25. Comparison data generated with SkyNet [Lippuner and Roberts, 2017]
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RESULTS: ELEMENTAL ABUNDANCES FOR “STRONG” R-PROCESS

106

1077

1012

107"

R

t=0.000e+00 s t=5.710e-02 s t=2.855e-01 s
—— full network
~——— BARONET
0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
zZ Z Z
t=5.710e-01 s t=5.710e+05 s t=5.710e+08 s
0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 S0 100
Z Z Z

Y. = 0.1. Comparison data generated with SkyNet [Lippuner and Roberts, 2017]
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Heating rate as a function of time. Comparison data generated with SkyNet [Lippuner and Roberts, 2017]
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CONCLUSIONS

> BARONET relies on dominant reactions to reduce the number of DoF to a few hundred pre-NFO

> post-NFO evolution coupled to hydro needs further simplification (impose functional form of Pa 7)

Ongoing work:
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CONCLUSIONS

> BARONET relies on dominant reactions to reduce the number of DoF to a few hundred pre-NFO

> post-NFO evolution coupled to hydro needs further simplification (impose functional form of Pa 7)

Ongoing work:

P better characterization of neutron freeze out
> include neutron captures for Y,

P realistic thermalization
> include fission for heavy elements

> extensive testing
> develop a “reduced” NSE solver

» coupling to hydro simulations

Stay tuned...Thank you
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