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Electron chemical potential
Ue INCreases with density p.

Pion-BEC affects

In the outer core, (P = Psaturation) ;
u, =~ 100MeV = free pion mass L=]0,p| +

S. L. Shapiro et al. (1983)

key properties of neutron stars:

* enhancing cooling rates
via neutrino emission

- mean-field approximation
(M FA) J. 1. Kapusta (1981)

m?|p|* + A|p|*

Analyses of relativistic BEC in the complex scalar theory

» Including no effects of
quantum fluctuations

- Functional Renormalization Group » complex-valued

) SOftenlng equat|0n Of State (FRG) L. F. Palfares (2012) pI’Oblem

E. E. Svanes etal. (2011), O(N) model
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Formalism - Functional Renormalization Group (FRG) -

* FRG calculates effective actions I'[{¢)]

non-perturbatively.
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* An IR-regulator R, is introduced in . = I,

[} follows the Wetterich flow equation:
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| P (classmal) . Initial condition

I}.,0 = I (Quantum) : solution

* Derivative Expansion
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* Local Potential Approximation

Zk(au<§b>)2 -1 (au<¢>)2 in g,

- Model - the complex scalar theory -
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[, = BV - U, (p): effective potential (p(x) = @)

* thermodynamics in FRG

order parameter (BEC?): po(T, u): = argmin Uy_,q(p)
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T, 1) = Upo(Po) gy | PESSUTEP =~ 5
grand-canonical potential . entropy: s = —d/0du, energydensity: € = —p + un + Ts/

1
po =0

normal
’ phase

Purpose: FRG analysis of the complex scalar theory
as a basic step for studying pion-BEC
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BEC
phase

number density: n = —dQ/du,

* flow equation IN R,.(p) = (k2 — ‘ﬁ‘z) ° H(kz — ‘ﬁ‘z) D.F. Litim (2001)
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E_ takes imaginary values at some

We require U, to be real and finite.

consider p-range »
where EE(ID) > ( 2 < meffk_)O <-

2
.U < meffk>0 = k* + Vs

~ E. E. Svanes etal. (2011), consider only real part
p regl ons. L. F. Palfares (2012), restrict parameters

cf. condition in free theory

Qfree is defined only if u?> < mg, ...

- We developed the novel method and obtained real valued BEC.
* We found in a strong coupling regime, quantum fluctuations are important.
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* Application for models including pions
* Analyses of parameters that have not been explored before
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sl 0814/ 7 quantum fluctuations strongly influence the behavior
£ S of the relativistic BEC.
0.47 1 - Regulator dependence...
-0 The Litim R, keeps poles away from relevant p-regions
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p/m? 1/ ®) The complex-valued problem would occur
We can find real-valued pg in 1% < mgfﬂk (0). FRG —— MFA === i oot 17 307 — )i in other regulators.
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~— Summary
The complex scalar theory in FRG suffers from the complex-valued problem. Outlooks:




