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Results

Deformation of Rapidly-Rotating Neutron Stars

Introduction

In nuclear physics, neutron stars provide a unigue opportunity to
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velocity rises. Additionally, for higher angular velocities relative to the
central density, neutron stars exhibit significant deformation. This
deformation affects not only the shape of the neutron star but also the
distribution of density within its interior.

This study Investigates the EoS constraints of nuclear matter under
rotational effects by employing the Komatsu-Eriguchi-Hachisu (KEH)

method [Monthly Notice. Sup. 237, 355-379 (1989)], which numerically
solves Einstein’s equations assuming axial symmetry.
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Solved by Self Consitent Field Iteration

with maximum mass difference (AM = MEER — M1OVY  This kind of
analysis will serve a new way to better constraining nuclear matter EoS.
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