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Background |

Neutron stars, highly compact celes-
tial bodies composed of nuclear mat-
ter, exhibit layered structures.

In the crossover region of inner crust
and core, nuclear matter forms ex-
otic inhomogeneous phases (pasta
phases).

The phases influence pulsar glitches,
magnetic field decay, etc.

DENSE MATTER

Neutron stars get denser with depth. Although
researchers have a good sense of the composition
of the outer layers, the ultra-dense inner core
remains a mystery.

1. Atmosphere Mostly hydrogen and helium
2. Outer crust Atomic nuclei and free electrons

3. Inner crust  Free neutrons and electrons,
heavier atomic nuclei

4.0uter core Neutron-rich quantum liquid

5.Innercore  Unknown, ultra-dense matter

Nature 579, 20-22 (2020)

January 29, 2025 2/20


https://doi.org/10.1038/d41586-020-00590-8

Background

Background Il

To study the pasta phases, one
can perform coordinate-space energy
density functional simulation.

This requires solving Hartree-Fock-
Bogoliubov (HFB) equation in each

iteration.

Complexity scales cubically with the
measure (volume) of the system!

Difficult for 3D system!
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Goal

Develop a method to perform the simulation without solving the HFB
equation.

Idea:
p(xo,x'c"), k(xo, x'a") ~ f(H). (1)

H: Hamiltonian
f(-): the Fermi-Dirac distribution as a matrix function

p(xo,x'0") = (T (x'0")h(x0)): density
k(xo, x'0’) = (Y1 (x'a')(xco)): pair density

Key Question:
o f(H)is 4N x 4N, p, k is 2N x 2N.

@ The band structure.

. T a—E



System configuration

System configuration

Let us consider a slab phase.

k _ z

O, + k)2 K2+ k2

hk _ _( 4 Zz X Y .

m + o +U(2). (3) y A ,
k = (kx,ky,kz)T, k, is the Floquet wave

vector. k., k, are wave vectors of plane )x

wave.

] January 29, 2025 5/20



Theory |

We introduce the generalized density matrix:

R(x0,x'o") = < p(xo, x'a’) k(xo,x'o") >

—k*(xo,x'0’) 1— p*(xo,x'd")
After some algebra, we show

1

R(xo,x'c") = N, Z R*(xo, x'o")
k
1 Lo o
Nk Z<X‘7‘e'k'xf(H/IL(/FB)ef'k'X\X/UI%
k
X is the location operator.
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Theory Il

One can compute f(HEzg) by expansion.

Let f(x) = f(erx +€c), €c = (€max + €min)/2, € = (€Emax — €min)/2,
-1 <x<1.

Represent f(x) with Chebyshev series:

Tht1(x) = 2xTh(x) — Tho1(x).

The required Neyp becomes small at finite temperature.
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Theory IlI

For f(Hfig). let Hipg = (Hiyeg — ecl)/er,

Nexp
- - EN) _
f(Hfes) = F(Afrs) = 5 + E ak Tk(Flfes), (7)
k=1

Tn-l—l(’l:III-(IFB) = 2’://-(//—'3 Tn(’://—(u—'s) - Tn—l(/:III-(IFB)-

The convergence speed does not depend on the number of space lattice

sites V.
The complexity is O(N2), smaller than the O(N®) of diagonalization.
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Nearsightedness

At finite temperature, R(x,x’) is only nonzero when |x — x| < ry.

Baer and Head-Gordon shows:

h2
3m

(D —-1)8, (8)

N~ Ino =
for reaching accuracy 1072,

When computing Toi1(HKrg) = 2HK s Ta(HKr5) — To1(HEgg), we can
discard the matrix elements (i, j) with |x; — x;| > ry.

rny does not depend on system size, so with fixed lattice spacing, the
complexity reduces to O(N).
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Numerical setup

Numerical setup

Potential: U
— 0 —_
U(z) = 1T e2)/3 L/2<z<L)/2, 9)
U(z) = U(z+L).

Pair potential:

L/2
Az) = / gn(2)(z — 2, (10)

L/2
g = 1.00 ~ 1.50Ug - fm3, Ug = h?/(m?Az)? = 259.19 MeV.

Solving p(z) = p(z, z), k(z) = k(z, 2') iteratively until x(z) converges.
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Results |

Comparing different methods
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FOE = “Fermion Operator Expansion”; HFB = “Solving HFB equation by Diagonalization”
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Results Il

We determine the number of Chebyshev terms self-consistently.
Left: Nexpansion|z:0 = 1700,
Right: Nexpansion|z:0 = 300.

This method works out nicely for even low-temperature cases.
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Results Il

Speed of convergence: temperature
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Ug = h?/(m?Az)? = 259.19 MeV is the energy scale determined by the lattice spacing.
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Results IV

Average error
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The finite-temperature results converge much faster.
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Results V

Speed of convergence: pairing strength
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The increase of g and paring gap leads to faster convergence.
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Results VI

Nearsightedness
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Results VII
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rnyo = 7.44fm is a reasonable estimation.

January 29, 2025

17 /20



Results VIII

Transverse dependence

With a little algebra, we show

R¥(xao,x'0") oc Jo(ke€), (11)

g:\/)m, k§:1/k§+k}%
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Results IX
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Nearsightedness also emerges in the transverse direction.
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Summary

We have developed the Fermion Operator Expansion method for
coordinate-space DFT simulation based on HFB theory with band
structure.

The core idea is to compute (x|f(H)|x’) instead of solving HFB equation.
When the nearsightedness approximation applies, the time complexity of
the method only scales linearly with the measure of system. It is ideal for

performing finite-temperate 3D simulation.

It is promising for studying the pasta phases in the bottom of neutron
crust.

. Ty



	Background
	Goal
	System configuration
	Theory
	Nearsightedness
	Numerical setup
	Results
	Summary

