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Background

Background I

Neutron stars, highly compact celes-
tial bodies composed of nuclear mat-
ter, exhibit layered structures.

In the crossover region of inner crust
and core, nuclear matter forms ex-
otic inhomogeneous phases (pasta
phases).

The phases influence pulsar glitches,
magnetic field decay, etc.
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Background

Background II

To study the pasta phases, one
can perform coordinate-space energy
density functional simulation.

This requires solving Hartree-Fock-
Bogoliubov (HFB) equation in each
iteration.

Complexity scales cubically with the
measure (volume) of the system!

Difficult for 3D system!

Energy-density functional
E[ρ,κ]

HFB eqatuon of motion Paricle number and
pair densities
ρ(r,r'), κ(r,r')

Variational
method

Single-particle
wavefunction

Update
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Goal

Goal

Develop a method to perform the simulation without solving the HFB
equation.

Idea:
ρ(xσ, x ′σ′), κ(xσ, x ′σ′) ∼ f (H). (1)

H: Hamiltonian
f (·): the Fermi-Dirac distribution as a matrix function
ρ(xσ, x ′σ′) = ⟨ψ†(x ′σ′)ψ(xσ)⟩: density
κ(xσ, x ′σ′) = ⟨ψ†(x ′σ′)ψ(xσ)⟩: pair density

Key Question:

f (H) is 4N × 4N, ρ, κ is 2N × 2N.

The band structure.
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System configuration

System configuration

Let us consider a slab phase.

Hk
HFB =

(
hk − µ ∆(z)
−∆∗(z) −h−k∗ + µ

)
, (2)

hk = −(∂z + ikz)
2

2m
+

k2x + k2y
2m

+ U(z). (3)

k = (kx , ky , kz)
T , kz is the Floquet wave

vector. kx , ky are wave vectors of plane
wave.

x

y
Z
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Theory

Theory I

We introduce the generalized density matrix:

R(xσ, x ′σ′) =

(
ρ(xσ, x ′σ′) κ(xσ, x ′σ′)

−κ∗(xσ, x ′σ′) 1− ρ∗(xσ, x ′σ′)

)
(4)

After some algebra, we show

R(xσ, x ′σ′) =
1

Nk

∑
k

Rk(xσ, x ′σ′)

=
1

Nk

∑
k

⟨xσ|e ik·x̂ f (Hk
HFB)e

−ik·x̂ |x ′σ′⟩, (5)

x̂ is the location operator.
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Theory

Theory II

One can compute f (Hk
HFB) by expansion.

Let f̄ (x) = f (ϵrx + ϵc), ϵc = (ϵmax + ϵmin)/2, ϵr = (ϵmax − ϵmin)/2,
−1 < x < 1.

Represent f̄ (x) with Chebyshev series:

f̄ (x) =
a0
2

+

Nexp∑
k=1

akTk(x), (6)

Tn+1(x) = 2xTn(x)− Tn−1(x).

The required Nexp becomes small at finite temperature.
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Theory

Theory III

For f (Hk
HFB), let H̄

k
HFB = (Hk

HFB − ϵc I )/ϵr ,

f (Hk
HFB) = f̄ (H̄k

HFB) =
a0
2

+

Nexp∑
k=1

akTk(H̄
k
HFB), (7)

Tn+1(H̄
k
HFB) = 2H̄k

HFBTn(H̄
k
HFB)− Tn−1(H̄

k
HFB).

The convergence speed does not depend on the number of space lattice
sites N.
The complexity is O(N2), smaller than the O(N3) of diagonalization.
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Nearsightedness

Nearsightedness

At finite temperature, R(x , x ′) is only nonzero when |x − x ′| < rN .

Baer and Head-Gordon shows:

rN ∼ rN0 =

√
ℏ2
3m

(D − 1)β, (8)

for reaching accuracy 10−D .

When computing Tn+1(H̄
k
HFB) = 2H̄k

HFBTn(H̄
k
HFB)− Tn−1(H̄

k
HFB), we can

discard the matrix elements (i , j) with |xi − xj | > rN .

rN does not depend on system size, so with fixed lattice spacing, the
complexity reduces to O(N).
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Numerical setup

Numerical setup

Potential:

U(z) = − U0

1 + e(z−z0)/a
, −L/2 < z < L/2, (9)

U(z) = U(z + L).

Pair potential:

∆(z) =

∫ L/2

−L/2
gκ(z ′)δ(z − z ′), (10)

g = 1.00 ∼ 1.50UE · fm3, UE = ℏ2/(m2∆z)2 = 259.19MeV.

Solving ρ(z) = ρ(z , z), κ(z) = κ(z , z ′) iteratively until κ(z) converges.
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Results

Results I

Comparing different methods
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FOE = “Fermion Operator Expansion”; HFB = “Solving HFB equation by Diagonalization”
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Results

Results II

We determine the number of Chebyshev terms self-consistently.
Left: Nexpansion|z=0 = 1700;
Right: Nexpansion|z=0 = 300.

This method works out nicely for even low-temperature cases.
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Results

Results III

Speed of convergence: temperature
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g = 1.00UE · fm3, µ = 4.50MeV

UE = ℏ2/(m2∆z)2 = 259.19MeV is the energy scale determined by the lattice spacing.
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Results

Results IV
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The finite-temperature results converge much faster.
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Results

Results V

Speed of convergence: pairing strength
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The increase of g and paring gap leads to faster convergence.
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Results

Results VI

Nearsightedness
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Results

Results VII
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rN0 ≈ 7.44 fm is a reasonable estimation.

January 29, 2025 17 / 20



Results

Results VIII

Transverse dependence

With a little algebra, we show

Rk(xσ, x ′σ′) ∝ J0(kξξ), (11)

ξ =
√

x2 + y2, kξ =
√

k2x + k2y
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Results

Results IX
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Nearsightedness also emerges in the transverse direction.

January 29, 2025 19 / 20



Summary

Summary

We have developed the Fermion Operator Expansion method for
coordinate-space DFT simulation based on HFB theory with band
structure.

The core idea is to compute ⟨x |f (H)|x ′⟩ instead of solving HFB equation.

When the nearsightedness approximation applies, the time complexity of
the method only scales linearly with the measure of system. It is ideal for
performing finite-temperate 3D simulation.

It is promising for studying the pasta phases in the bottom of neutron
crust.
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