3D simulations of CCSNe: a systematic investigation of NS properties

<u>KN+(2025) MNRAS, 536, 280</u>

Ko Nakamura (Fukuoka Univ.)

T. Takiwaki (NAOJ), J. Matsumoto (Keio Univ.), K. Kotake (Fukuoka Univ.)

Nucleosynthesis and Evolution of Neutron Stars @ YITP, Kyoto Univ. 27 - 30 Jan. 2025

From a massive MS star to a CCSN

✓ The standard scenario toward explosion

A massive star forms iron core.

Gravitational collapse

Fe

~0.1 s BB

2

- \rightarrow The core gravitationally collapses.
- \rightarrow Shock stalls and revives via neutrino heating.
- \rightarrow Finally, the shock breaks out the stellar surface.

Note that the time scale of stellar evolution depends on its mass. Shown is the case of a ~ 10 solar-mass star.

Fe core

Neutrino trapping

v sphere

t = 0

~50 ms PB

min. \sim a day

Systematic numerical simulations

✓ Heger et al. (2003)

There should be a "critical" mass at $M \sim 25 M_{\odot}$, dividing NS/BH forming cases.

- ✓ O'Connor & Ott (2011); Ugliano et al. (2012)
 - **1D simulations** with artificial explosion schemes show **non-monotonic explosion properties**.

Systematic numerical simulations

✓ Heger et al. (2003)

4

There should be a "critical" mass at $M \sim 25 M_{\odot}$, dividing NS/BH forming cases.

✓ O'Connor & Ott (2011); Ugliano et al. (2012)

1D simulations with artificial explosion schemes show **non-monotonic explosion properties**.

✓ KN et al. (2015); KN et al. (2019)

2D self-consistent simulations show linear relations between some explosion properties and the **compactness parameter** $\boldsymbol{\xi}$.

 $\xi_M = M(R) [M_{\odot}] / R [1000 \text{ km}]$

Systematic numerical simulations

✓ Heger et al. (2003)

There should be a **"critical" mass** at $M \sim 25 M_{\odot}$, dividing NS/BH forming cases.

✓ O'Connor & Ott (2011); Ugliano et al. (2012)

1D simulations with artificial explosion schemes show **non-monotonic explosion properties**.

✓ KN et al. (2015); KN et al. (2019)

2D self-consistent simulations show linear relations between some explosion properties and the **compactness parameter** $\boldsymbol{\xi}$.

✓ Burrows et al. (2020)

3D self-consistent simulations show low-energetic ($\sim 10^{50}$ erg) or failed explosions.

Systematic CCSN simulations

	Spatial dim.	Model #	v heating	ZAMS M $[M_{\odot}]$	Z	sim. time	Summary
O'connor & Ott '11,'13	1D	~100	× factor	10-120	0-solar	~1s	Non-monotonic expl./BH formation.
Ugliano+'13	1D	~100	$Lv(R_{\rm NS},t)$	10-40	solar	~ 10 s+	Non-monotonic explosion properties.
KN+'15	2D	~400	Self-consistent	10-75	0-solar	~1s	Explosion properties depend on ξ .
KN+'19	2D	10	Self-consistent	10-20	solar	~10s	Long-term accretion produces <i>E</i> exp>10 ⁵¹ erg.
Burrows+'20	3D	14	Self-consistent	9- 20,25,60	solar	<1s	Eexp ~ 0.1x10 ⁵¹ erg
KN+'25	3D	16	Self-consistent	9-24	solar	0.5s	Independent 3D study, based on MHD.

Systematic 3D MHD simulations - Numerical scheme

- ✓ 3DnSNe_MHD code (Matsumoto+'20) based on 3DnSNe code (Takiwaki+'16, '18).
 - 3D neutrino-radiation hydrodynamics code for CCSN simulations.
 - Neutrino transport: 3-flavor IDSA scheme, 20 energy bins for $0 < e_v < 300$ MeV.
 - GR effects: effective GR potential (case A in *Marek+'06*) and reddening in v transport.
 - EoS: LS220 EoS + Boltzmann gas.

✓ 16 progenitor models covering 9-24 solar masses (Sukhbold+'16)

Systematic 3D MHD simulations - Numerical scheme

- ✓ **3DnSNe MHD code** (*Matsumoto+'20*) based on 3DnSNe code (*Takiwaki+'16,'18*).
 - 3D neutrino-radiation hydrodynamics code for CCSN simulations. •
 - Neutrino transport: 3-flavor IDSA scheme, 20 energy bins for $0 < e_v < 300$ MeV. •
 - GR effects: effective GR potential (case A in *Marek*+'06) and reddening in v transport. ٠
 - EoS: LS220 EoS + Boltzmann gas. •

✓ 16 progenitor models covering 9-24 solar masses (Sukhbold+'16)

- ✓ Initial 2D simulation:
 - No rotation, $A_{\phi} = \frac{B_0}{2} \frac{r_0^3}{r^3 + r_0^3} r \sin \theta$ with $B_0 = 10^{10} [G]$ (weak) and $r_0 = 10^3$ km.
 - $600(r)x128(\theta)$ grids for $0 \leq R \leq 10^4$ km and $0 \leq \theta \leq \pi$.
- ✓ Subsequent 3D simulation:
 - $2D \rightarrow 3D$ at 10ms after bounce.
 - Random density perturbation (\leq 1%) is imposed in R > 100 km.
 - $600(r)x64(\theta)x128(\phi)$ grids for $0 \leq R \leq 10^4$ km, $0 \leq \theta \leq \pi$, and $0 \leq \phi \leq 2\pi$.

Systematic 3D MHD simulations - Overview

24 solar-mass progenitor

~2M CPU*hr / model (~1.5 month with 2000 CPUs)

Systematic 3D MHD simulations - Shock revival

✓ (Top panel) Mass accretion rate @ r = 500km.

Roughly in order of ZAMS mass (or compactness) in the early phase (< 100 ms).

Some models show sudden drop when the Si/O interface passes through.

✓ (Bottom panel) Angle-averaged <u>shock radius</u>.

In some models the shock jumps when the Si/O interface falls onto the shock and ram pressure from the accreting matter is suppressed.

 \rightarrow Shock revival time is not in order of ZAMS mass.

The density jump in the progenitor structure plays a crucial role in shock revival (**explodability**).

Systematic 3D MHD simulations - Explosion energy

✓ **Diagnostic explosion energy** ($E_{kin} + E_{int} + E_{grv}$ of the ejected matter).

Most models show *E***exp** < **0.2 x 10⁵¹ erg** @500ms, except s23 & s24 models (~ **0.8 x 10⁵¹ erg**).

Here overburden (negative binding energy) of the stellar envelope is not taken into account.

Multi-messenger signals from CCSN

✓ KN+ 2016, MNRAS, 461, 3296

CCSNe emit neutrinos, GWs and electromagnetic waves.

Luminosity: neutrinos & GWs >> EM

Detectability: EM >> neutrinos & GWs

Remnant (NS/BH) information is also useful.

Properties of NSs - mass

The mass accretion onto the central PNS almost stops within the simulation time (t_{pb}<500ms), and $M_{\rm PNS}$ converges to **1.4-2.1** M_{\odot} .

 M_{PNS} is well correlated to the parameters characterizing mass accretion rate (M_{Si} , ξ_M).

Compactness: $\xi_M = M[M_{\odot}]/R(M)[1000 \text{km}]$

Properties of NSs - mass

1) Estimate the gravitational mass of cold NSs. *Lattimer & Prakash (2001)*

2) Assume that $M_{NS} = M_{PNS}$ at $t_{pb} = 500$ ms, and the IMF is Salpeter's one.

3) Compare with observational data. 65 NSs from Table 1 in Lattimer (2012)

The <u>NS mass distribution</u> has a peak at $\sim 1.4 M_{\odot}$ as seen in the observational data.

Light NSs coming from small-mass SNe? Even O-Ne-Mg SNe and ultra-stripped SNe leave NSs >1.2 M_{\odot} .

> Kitaura et al. (2006) Suwa et al. (2015), Mueller et al. (2018) Mueller, Heger, & Powell (2025)

Heavy NSs coming from binary interaction? e.x.) Black Widow Pulsar

Properties of NSs - kick velocity

NSs are "kicked" at the explosion \rightarrow correlated to anisotropic ejection of the matter and neutrino.

✓ Hydrodynamic kick.

$$\mathbf{v}_{\rm kick}^{\rm hydro} = -\frac{1}{M_{\rm PNS}} \int_{\rho < 10^{11} \, {\rm g \, cm^{-1}}} \mathbf{v} \rho {\rm dV},$$

assuming the conservation of the matter
momentum.

✓ Neutrino-driven kick.

$$\dot{\mathbf{v}}_{\text{kick}}^{\nu} = -\frac{1}{cM_{\text{PNS}}} \int_{S} \left(\mathbf{F}^{\nu_{e}} + \mathbf{F}^{\bar{\nu}_{e}} + \mathbf{F}^{\nu_{x}} \right) \mathrm{dA},$$

assuming ray-by-ray (only radial) transport of neutrino.

Properties of NSs - kick velocity

NSs are "kicked" at the explosion \rightarrow correlated to anisotropic ejection of the matter and neutrino.

Not yet converged at $t_{pb} = 500$ ms. \rightarrow long-term simulation is necessary.

Properties of NSs - spin

Note: our simulations start from **non-rotating** progenitor models.

Anisotropic motions behind the shock. \rightarrow accretion of angular momentum onto the central PNS.

NS spin period $T = 2\pi I/J$ using the total angular momentum $J = \sqrt{J_x^2 + J_y^2 + J_z^2}$.

 $T_{\rm NS} =$ **0.1 s - 10 s** at t_{pb} = 500ms. Heavy (large- ξ) models present short periods.

The most rapidly rotating model (s24) shows a signature of the **spiral SASI motion**.

Properties of NSs - magnetic field

The magnetic field strength at the center is amplified by more than 10³ times by accumulation of magnetic field flux frozen with the accreting matter, and dynamo process in the PNS convective region.

Summary

Explodability \leftarrow fine structure of the progenitor structure (density jump). **Explosion properties** \leftarrow mass accretion rate ($\sim \xi$, M_{Si})

- ✓ Systematic study of 3D CCSN models is still challenging but now it's a feasible idea.
- ✓ We demonstrate **3D MHD simulations for 9-24 solar mass progenitors** (Sukhbold+'16).
- ✓ All the examined models show successful shock revival in 300 ms.
 - Most models show *E*_{exp} < 0.2 x 10⁵¹ erg, except s23 & s24 models (~ 0.8 x 10⁵¹ erg).
- ✓ Our 3D models leave NSs:
 - **Mass** distribution well matches with observational data with a peak at 1.4 M_{\odot} .
 - Kick velocity is induced by anisotropic ejection of the matter and v, but < 300km/s.
 - Spin period $T_{NS} = 0.1 \text{ s} 10 \text{ s}$, heavy (large- ξ) models present short periods.
 - Magnetic field is enhanced by the accumulation and dynamo processes.
 - \rightarrow They will provide us with fruitful information on the CCSN explosion mechanism!