Constraints on super-heavy UHECR source model with a large-scale structure simulation

Ryo Higuchi (RIKEN) with Eiji Kido and Shigehiro Nagataki

based on Higuchi et al. in prep.

Highest energy particle in TA experiment "Amaterasu" TA collaboration, Science, Volume 382, Issue 6673, pp. 903-907 (2023) fields Equatorial G.P. expected flux [arbitrary units] 60 coordinates + IC 342 NGC 6946 JF2012 🔞 2.5 30 TA hot spot GC 4631 **PT2011** 2 Local Void Gala R.A. 1.5 * NGC 1068 (deg.) 360 60 300 240 180 120 effection by TA FoV Relative M83 ¥ NGC 253 -30 **Centaurus**A ¥ NGC 4945 0.5 S.G.P. Dec. (deg.) $\mathbf{0}$

- Highest energy UHECR in TA experiment arrived on May 27th, in 2021(244 EeV, second highest to "Oh-My-God" particle).
- Where does it come from?
 - Lack of mass information & large uncertainty between GMF models.
- UHECR above 100 EeV is an interesting topic today!

Arrival directions of UHECRs above 100EeV

T. Fujii 2024 (ICRC2023)

The correlation with source was expected for higher energy…

- Interpretation :
 - higher source density
 - 2 stronger magnetic field
 - **3** heavier mass composition
- …How to separate the scenario?

- (Currently)no significant anisotropy
- **Doublet/triplet** exist, but consistent with isotropy.

The situation looks the same as 20yrs ago, but **energy is** ×**10 higher** & we know UHECRs seems **not only protons**!

Small-scale anisotropy

- Before TA & Auger experiment, there was an expectation to detect a small-scale anisotropy (multiplet)
 - Higher-energy UHECRs are less deflected by magnetic field, and concentrates around a point-source
 - The situation is totally different!
- Still works as a test for anisotropy?
 - Today we adapt **a number of multiplets** as a test parameter.

AGASA + A20

How isotropic the distribution of UHECR above 100 EeV be?

- Public dataset of Auger experiment (Auger collaboration 2022)
- Evaluation with:
 - number of multiplets (within 3 deg):
 - Comparison with isotropic MC datasets

"Super-heavy" UHECR? (Farrar 24,Zhang+24)

- UHECRs include r-process nuclei heavier than iron?
 - Much larger deflection by magnetic field!
 - +longer propagation distance
 - source: BNS merger?
- Observational side:
 - We cannot constrain from current statistics \cdots
 - Especially, we don't have mass information above 100 EeV
 - Just one of the theoretical possibility!

Our work

Questions:

- How to explain non-anisotropic UHECR distribution above 100EeV?
- How to test the **super-heavy UHECR scenario**?
 - Detection completeness of galaxy catalog is a problem, when we assume distant sources.

Goal:

- Establish a simple method
 - with <u>a large-scale structure simulation</u>,
 - which include super-heavy UHECR scenario,
 - to constrain <u>source & magnetic field parameters</u>.

Catalog: Millenium Run

- Today, we focus on a simple (and lessmodel dependent) discussion based on simulated galaxy catalog:
 - Millenium Run (Springel et al. 2005)
 - Semi-analytical galaxy model
 - Large-scale structure inside the cube (500 Mpc/h)^3
- The cluster can be seen around 10-20 Mpc.
- The distribution of more distance galaxies becomes more isotropic.

- Evaluation of energy loss length
 - propagation code: CRPropa
 - calculation of uran's cross-section: TALYS-2.0
- The energy-loss length of uranium is 1 magnitude larger !
- We calculate a distribution of source distance r: p(r)

Source distribution

- Calculation of source density distribution $m(r) \times \rho(r)$
- The nearby matter density peak dominate proton/iron source distribution.
- Uranium can reach the Earth over 100 Mpc scale!

Simulated UHECR distribution above 100 EeV

- 100 events over the sky $\times\,1000$ datasets
- Even without magnetic fields, uranium reflects isotropic distribution of distant sources.

Simulated UHECR distribution above 100 EeV

- 100 events over the sky × 1000 datasets
- Even without magnetic fields, uranium reflects isotropic distribution of distant sources.

Result: number of multiplets

- no magnetic field case:
 - single-proton is rejected
 - single-iron is rejected
- for higher source density, only singleuran case can reproduce isotropy.

Result: number of multiplets

- Weak magnetic field:
 - single-proton is rejected
 - single-iron is rejected
- for higher source density, only singleuranium case can reproduce isotropy.

Result: number of multiplets

- strong magnetic field:
 - single-proton is rejected
- single-iron/uranium can produce the isotropy

Result: allowed region for isotropy

- Single-proton is rejected for all y! parameters
 - Single-iron case can reproduce isotropy, only when turbulent EGMF is strong ($\alpha > 0.1$).
- Single-uranium can reproduce isotropy when the source density is high ($\rho > 10^{-3}/Mpc^{-3}$)

Summary & future

- Single-proton can be rejected above 100 EeV?
- When the EGMF turned to be weak, super-heavy UHECR model & high-source density may explain the nonanisotropic distribution.
- The simple multiplet counts still works!
 - Lower limits of source density and magnetic field
 - We cannot distinguish heavy/super-heavy UHECR, when the magnetic filed is strong.
 - The intermediate & large-scale anisotropy should be able to distinguish them (next goal)

