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Figure 1. Conjectured QCD phase diagram with boundaries that define various
states of QCD matter based on S�B patterns.

The chiral transition is a notion independent of the deconfinement transition. In
section 3.2 we classify the chiral transition according to the S�B pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the phase structure of QCD
matter including conjectures which are not fully established. At present, relatively firm
statements can be made only in limited cases – phase structure at finite T with small
baryon density (µB ⌧ T ) and that at asymptotically high density (µB � ⇤QCD).
Below we will take a closer look at figure 1 from a smaller to larger value of µB in
order.

Hadron-quark phase transition at µB = 0: The QCD phase transition at finite
temperature with zero chemical potential has been studied extensively in the numerical
simulation on the lattice. Results depend on the number of colours and flavours as
expected from the analysis of e↵ective theories on the basis of the renormalization
group together with the universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the finite size scaling analysis
on the lattice [37], and the critical temperature is found to be Tc ' 270MeV. For
Nf > 0 light flavours it is appropriate to address more on the chiral phase transition.
Recent analyses on the basis of the staggered fermion and Wilson fermion indicate a
crossover from the hadronic phase to the quark-gluon plasma for realistic u, d and s

quark masses [38, 39]. The pseudo-critical temperature Tpc, which characterizes the
crossover location, is likely to be within the range 150MeV� 200MeV as summarized
in section 4.2.

Even for the temperature above Tpc the system may be strongly correlated and
show non-perturbative phenomena such as the existence of hadronic modes or pre-
formed hadrons in the quark-gluon plasma at µB = 0 [28, 40] as well as at µB 6= 0
[41, 42, 43]. Similar phenomena can be seen in other strong coupling systems such as

Fukushima, Hatsuda, Rept. Prog. Phys. 74 (2011) 014001 
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Neutron Star Physics: Diverse Observations

Demorest et al, Nature 467 (2010) 1081

parameters, with MCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.

From the detected Shapiro delay, we measure a companion mass of
(0.500 60.006)M[, which implies that the companion is a helium–
carbon–oxygen white dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.

The standard Keplerian orbital parameters, combined with the known
companion mass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
We measure a pulsar mass of (1.97 6 0.04)M[, which is by far the high-
est precisely measured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
vides no information about the neutron star’s radius. However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.

The mass measurement alone of a 1.97M[ neutron star signifi-
cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowest maximum masses tend to be those which
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timing measurements in our GBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay. We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbital model
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of the MCMC error analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in the M2–i
plane, computed from a histogram of MCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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The results are shown in Figure 10. The minimum value of the
bolometric χ2/dof is 59.6/43, which has a probability of
0.0473, indicating that this 64-phase model also provides an
acceptable description of the 64-phase bolometric waveform
data. When the predictions of this best-fit model for the energy-
resolved waveform with 64 phase bins are compared with the
64-bin energy-resolved NICER waveform data, the resulting
χ2/dof is 16347.5/16360, which has a probability of 0.526,
again much higher than the probability that we found when we
divided the data into only 32 phase bins, and indicating that this

energy-resolved waveform model provides an acceptable
description of the energy-resolved NICER waveform data with
64 phase bins.
These results indicate that our best-fit models with two and

three oval spots provide good descriptions of the NICER
waveform data at high phase resolutions, and that the radius
and mass estimates inferred from them are therefore credible.
Why the bolometric waveforms given by the models that best
fit the 32- and 64-phase energy-resolved NICER waveform data
differ from the 32-phase bolometric waveforms constructed

Figure 7. Comparison of the joint posterior probability density distributions for M and Re given by the best fits of the waveform model with two (panel (a)) and three
(panel (b)) uniform-temperature oval spots. The inner contour shown in each panel contains 68.3% of the posterior probability, whereas the outer contour contains
95.4%. The color indicates the credibility in standard deviations of each point in the posterior probability density distribution. Again, the agreement of the distributions
given by the two models is excellent.

Figure 8. Comparison of the bolometric waveforms given by the best-fit waveform models with two (panel (a)) and three (panel (b)) oval spots. The solid curves show
the full waveforms; the dashed curves show the contributions to the full waveform made by the individual hot spots. The components that generate the full waveforms
are very similar for the two models.
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Two solar mass neutron stars Observations from Neutron Star Mergers millisecond passer

Figure 12: Mass-radius relations obtained with di↵erent microscopic (solid lines) and phenomenological
(broken lines) EoSs. The mass of the most heavy pulsar PSR J0740+6620 [330] observed until now is
also shown, together with the constraints from the GW170817 event [8] and the mass-radius constraints
of the NICER mission [432, 433].

6.2.5 Surface temperatures

The e↵ective surface temperatures of NSs can be determined from the detection of thermal photons
from the stellar surface in isolated NSs (see Sec. 7.4) by fitting the observed spectra to blackbody ones.
One should keep in mind, however, that NSs are not black bodies, because the hydrogen and helium (or
even carbon) in their atmospheres modify the blackbody spectrum. Furthermore, the surface emission
can be modified by the presence of strong magnetic fields. In fact, when realistic atmosphere models
are used in the fit of the measured spectrum, surface temperatures are reduced. We note that any
uncertainty in the determination of the surface temperature changes the corresponding luminosity L
of the star by a large factor according to the Stefan–Boltzmann law, L = 4⇡R2�T 4. Consequently, it
is not appropriate to use the surface temperature when comparing with observational data, but the
luminosity instead.

6.2.6 Gravitational redshift

A source of very valuable information on NS structure is provided by the measurement of its gravitational
redshift

z =

✓
1�

2GM

R

◆�1/2

� 1 , (62)
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Figure taken from Burgio, Schulze, Vidaña,  Wei, PPNP 120 (2021) 103879

Figure 10: The pressure as a function of the baryon density for symmetric (left panels) and beta-stable
matter (right panels). Results for microscopic (phenomenological) models are shown in the upper
(lower) panels. Constraints from HIC data of the KaoS experiment (orange bands) and flow data (gray
bands) are shown together with the limits deduced by the GW170817 event (blue bands in the right
panels).

6.1.2 Constraints of the isovector parameters

The isovector parameters of the nuclear EoS can be constrained experimentally from isospin di↵usion
measurements [405], the analysis of giant [406] and pygmy [407, 408] resonances, isoscaling [409], isobaric
analog states [235], pion [410] and kaon [411] production in HICs or measurements of the neutron skin
thickness in heavy nuclei [162, 412–418]. Astrophysical observations can also be used to constrain these
parameters. It has been shown, for instance, that the slope parameter L of the symmetry energy is
correlated with the radius [419] and the tidal deformability [420, 421] of a 1.4M� NS, and that precise
and independent measurements of the radius and the tidal deformability from multiple observables of
NSs can potentially pin down the correlation betweenKsym and L and thus the high-density behaviour of
the nuclear symmetry energy [422]. Nevertheless, whereas S0 is more or less well established (⇡ 30MeV),
the values of L, and specially those of Ksym and Qsym, are still uncertain and poorly constrained.
Combining di↵erent data, for instance, the authors of Ref. [423] give 29.0 < S0 < 32.7MeV and
40.5 < L < 61.9MeV, while in Ref. [187] it was suggested 30.2 < S0 < 33.7MeV and 35 < L < 70MeV.
Why the isovector part of the nuclear EoS is so uncertain is still an open question whose answer is related
to our limited knowledge of the nuclear force and in particular to its spin and isospin dependence.

We show in Fig. 11 the slope of the symmetry energy L as a function of the symmetry energy at
saturation S0. The di↵erent symbols show the predictions from microscopic approaches (black circles),
the Skyrme EoS (green triangles) and the NLWM (red squares) and DDM models (blue diamonds).
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TOV equations

Constraint of EOS 
from Observations

Low density: Nuclear Phys.
High density: pQCD

What is the Intermediate  
Density Regime?
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Plan of this talk
●Basics of QCD 
●Vacuum property 
●QCD finite temperature 
●QCD finite density 
●Development of numerical simulations 
●Summary



Quantum ChromoDynamics

quarks gluons

massless, spin 1massive, spin 1/2
Representation: 3 (R,G,B) 8

SU(3) gauge theory
ℒ = ∑

q
(q̄RDqR + q̄LDqL − mq(q̄RqL + q̄LqR)) −

1
4

Ga
μνGμν,a

where D = γμ(i∂μ + gAμ)



Color RGB is not observable

Property of gauge theory
Gauge symmetry:

Gauge symmetry cannot be spontaneously broken

Gauge invariant degrees of freedom

electric flux
gluon(ball)quark antiquark

quark

quark quark



Possible phases of QCD
●Confinement phase 

●Deconfinement phase
●Higgs phase (superconducting phase)

●Topological phase 
　and …..



Deconfinement phase
Consider a pair of test charge

Color deconfinement
At long distance the energy is finite and 

color flux exists between test charges.

(Topological ordered exhibits similar property)



Confinement phase
Consider a pair of test charge

Confinement (narrow sense)
At long distance the energy diverges.

This is well-defined if mq → ∞



Confinement phase
Consider a pair of test charge

Confinement (narrow sense)
At large distances, the energy diverges.

This is well-defined in the limit mq → ∞

At large distances, color flux between test charges vanishes.
Confinement (broad sense)

This is the case for QCD.
However, this cannot distinguish 

between confinement and Higgs phases



Confinement and Higgs 
are similar to liquid and gas

Physical property may be different between two phases,  
but it will be smoothly connected (Fradkin–Shenker ’79).

Fradkin Schenker

solid

liquid

Gas

Pressure

temperature1000

1atm

( ℃ )

Bonati,. Cossu,  D’Elia, Giacomo NPB 828, 39 (2010) 

400 C. Bonati et al. / Nuclear Physics B 828 (2010) 390–403

Fig. 11. Phase diagram of the Higgs SU(2) with rapid crossovers indicated by dotted lines.

Fig. 12. Plaquette susceptibility for κ = 0.85.

towards smaller β values, until it intersects the SU(2) bulk in the point indicated by A in Fig. 11.
In the neighborhood of the point A the “first order continuation” peak gets stronger and the
SU(2) bulk disappears. This increase could have been misinterpreted as the first order transition
line endpoint in previous works. A direct check to ensure that in this region there is no transition
is shown in Fig. 12. For still larger κ values only one maximum is present in susceptibilities,
which gets weaker as κ → ∞.

This interplay between the first order transition line and the bulk SU(2) suggests that the first
order transition could be in some way related to the same lattice artifacts that drive the bulk
SU(2) transition, namely the Z2 monopoles. The density of Z2 monopoles seems indeed to have
a jump across the transition (see Fig. 4).

2.6. Finite temperature

Motivated by the last observation we try to investigate if the first order transition line can itself
be thought as a lattice artefact, like the pure gauge SO(3) first order bulk transition. To answer

SU(2) with fundamental Higgs

“Confinement like”

“Higgs like”



Chiral symmetry
At mq → 0

SU(Nf)R × SU(Nf)L × U(1)V × U(1)AGlobal symmetry 

 : Explicit breaking by anomalyU(1)A → ℤ2Nf

 :Spontaneous breakingSU(Nf)R × SU(Nf)L → SU(Nf)V

ℒ = ∑
q

(q̄RDqR + q̄LDqL) −
1
4

Ga
μνGμν,a



Chiral anomaly
E
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Particle (R)
Anti-particle (L)

ΔQ = ΔQR + ΔQL = 0

ΔQ5 = ΔQR − ΔQL =
ET
π

∂μ jμ = 0

∂μ jμ
5 =

E
π

∂μ jμ = 0
∂μ jμ

5 = CE ⋅ B

(3+1)d



Vacuum property

Vacuum: Lorentz invariant: Pμ |Ω⟩ = 0 Jμν |Ω⟩ = 0
Q: Why is the vacuum condensate scalar?

Only scalar~1, symmetric tensor~ , four rank antisymmetric tensor ~    
and its combination can be condensed.

ημν ϵμνρσ

Q: Is a parity odd vacuum possible?

Vafa-Witten theorem
No, parity cannot be broken in the QCD vacuum

(Vector-like gauge theories with )θ = 0

Vafa, Witten, PRL53, 535 (1984)

det(D − m) > 0derived from positivity of quark determinant 
D = − D† γ5D = − Dγ5

Vafa, Witten, Nucl. Phys. B234, 173 (1984)
Isospins are also unbroken 



Vacuum property
Q. How about chiral symmetry?

A. Chiral symmetry need to be spontaneously broken

Baryon is massless 
Chiral symmetry breaking

Other symmetry breaking
Topological phase, CFT, …

The vacuum can not be trivially gapped:
Existence of chiral anomaly:

The low-energy effective theory need to match the anomaly
’t Hooft (’80)



Vacuum property

Baryon cannot be massless  for Nf = 3
Chiral symmetry breaking

Baryons cannot be massless as long as mπ ≠ 0

mB ≥
3
2

mπBaryons satisfy

Therefore, chiral symmetry breaking is natural 

Positivity of quark determinant implies 

Nussinov('83)



What happens at finite  and  ?T μ
At finite  T

Order parameter (universally) vanishes at high T
Chiral symmetry restoration 

SU(Nf)R × SU(Nf)L

(σ, πa), (ρa, aa
1), ⋯

become good quantum number 
Order parameter vanishes⟨q̄q⟩ → 0

Degeneracy of spectra

Anomaly matching does not  impose a constraint
(Instead, it leads to chiral magnetic and vortical effects.)



Results from Lattice QCD

7

FIG. 1. Left: Renormalized chiral condensate h ̄ iR = �
ml
m4

⇡

⇥
h ̄ il,T � h ̄ il,0

⇤
calculated within QMHRG is compared to the

continuum extrapolated lattice data from Ref. [20]. Right: The relative contribution to the subtracted light quark condensate,
�ms

⇥
h ̄ il,T � h ̄ il,0

⇤
/T

4, due to di↵erent meson and baryon channels is shown and the resultant total contribution within
QMHRG (orange band) is compared to the lattice data from Ref. [20].

results at T . 100 MeV, beyond which the latter increases more strongly with temperature leading to a larger
di↵erence between the two.

A similar comparison of lattice QCD data with the HRG model predictions was shown in Ref. [20]. However, the
uncertainty in the HRG predictions have been reduced by an order of magnitude in our results. This is possible now
because of a more precise determination of � terms for the ground state baryons [61]. Furthermore, with a significant
improvement in the calculation of ⇢ meson mass on the lattice as a function of the pion mass [68], we could extract
the corresponding � term more precisely. Similar improvement of the � terms of the pseudoscalar isosinglet meson
excited states has also led to a more accurate HRG model estimate of the renormalized chiral condensate.

To check the robustness of our predictions we have also calculated a di↵erent definition of the renormalized chiral
condensate �ms
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4, shown in the right panel of Fig. 1. The temperature dependence of this
quantity is similar to that of the trace anomaly calculated in Ref. [22], and it is also useful in order to understand the
relative importance of di↵erent hadron species contributing to the chiral condensate. As one can observe from Fig. 1,
the heavier hadrons become important for T > 150 MeV. These are the states which are responsible for the increase
of this observable as a function of temperature, since the contribution from the pseudoscalar states monotonically
decreases beyond T ⇡ 100 MeV. We can also see that the contributions of the higher-lying baryon and meson
resonances are important for T > 150 MeV and become comparable in magnitude to the individual contributions due
to octet and decuplet baryons and vector mesons. The quark mass dependence of these excited hadron resonances are
not very well constrained by lattice QCD calculations and the errors on the corresponding � terms are comparatively
large. Hence the error band for this observable also increases with temperature. Based on the discussion in Appendix
A we assign a generous 50% relative error for the � terms of these higher-lying meson and baryon resonances. In
Appendix B we further scrutinize the relative contribution of these resonances to the chiral observables.

In the left panel of Fig. 2, we show the temperature dependence of another definition of the renormalized chiral
condensate, �l

R as calculated from the HRG model and compared with the lattice data. This quantity is related to
the above definition of the chiral condensate through �l
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by our desire to extract the pseudocritical temperature corresponding to the chiral crossover transition, within our
HRG model calculations. A comparison with the lattice QCD data for �l

R leads to similar conclusions as earlier,
namely for T  140 MeV the di↵erence between the lattice and HRG model result is small, while for 140 < T < 160
MeV the HRG model results for �l

R drop slower than the lattice QCD results. At still higher temperatures the lattice
results for �l

R flattens o↵ signaling a change in the degrees of freedom, while the HRG model data keep decreasing.
Let us now discuss the technique of determination of the pseudocritical temperature. In lattice calculations, the

pseudocritical temperature is defined as an inflection point of the renormalized chiral condensate or the peak of the
chiral susceptibility as a function of temperature. Due to the breaking of the exact chiral symmetry due to a finite
quark mass, the value of the pseudo-critical temperature will depend on the quantity used to define it, including
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smaller than the corresponding zero temperature masses. In
the s̄s sector the screeningmass of thef1meson is about 15%
lower than the f1 mass around Tpc and reduces to about 7%
already at T ≲ 0.9Tpc. The situation is similar in the ūs
sector.However, thermal effects are substantially larger in the
ūd sector. Here we find that the screening mass of the a1
mesons at Tpc differs by about 35% from the corresponding
zero temperature mass and the two masses still differ by
about 20% at T ≲ 0.9Tpc. Note that also from our calcu-
lations forml ¼ ms=20, where we have results at even lower
temperatures, we found that the screeningmasses go towards
corresponding zero temperature masses steeply. Similar
behavior was also found in calculations with staggered
fermions utilizing the p4 discretization scheme [12].
The situation is far more complicated in the S sector for

finite lattice spacings. In nature, the lightest flavored scalar
meson is either the a0ð980Þ or the a0ð1450Þ. Rather than
either of these values, as can be seen from the left panel of
Figs. 6 and 7, the scalar screening mass approaches the
value 2mπ instead. The reason for this is that for staggered
fermions, the scalar can decay into two pions at finite lattice
spacing [53]. This decay is forbidden in nature due to
parity, isospin, and G-parity (IG) conservation. The
unphysical behavior in the staggered discretization comes
from the contribution of the different tastes in the inter-
mediate states of loop diagrams. If one takes the continuum
limit for the correlator before calculating the screening
mass, then the contribution from different tastes cancels out
and the physical behavior is recovered [53–55]. Since we,
however, calculate the screening masses first and then take
the continuum limit, we obtain the unphysical ππ state
rather than the true scalar ground state or the physically
allowed πη decay. The unphysical decay only occurs for
mesons with isospin I ¼ 1. For the ūs case (I ¼ 1=2), the
decay to Kπ actually occurs in nature. In Figs. 6 and 7, we
see that the scalar screening mass indeed tends to mπ þmK
as T → 0.
As the crossover temperature is approached, the vector

and axial vector screening masses should become equal due
to effective restoration of chiral symmetry. At T ¼ 0, the
axial vector meson a1 is about 500 MeV heavier than the

vector meson ρ. As the temperature is increased, the AV
screening mass decreases while the V mass increases
slightly until the two masses become degenerate right at
the pseudocritical temperature (left panel of Fig. 7). In
contrast, in the ūs and s̄s sectors, AV and V masses become
equal at higher temperatures compared to Tpc. Moreover,
the relative change of AV masses with respect to V masses
from low temperature towards degeneracy temperature
progressively decreases when one goes from ūd to s̄s. It
must be noted that the approach is nevertheless smoother
compared to previous results that were obtained using the
p4 discretization scheme for staggered fermions [12].
Crossover temperature, as noted from Fig. 7, is quite
similar to what has been seen in the calculation of nucleon
masses, where the mass of one particular parity (the one
with higher zero temperature mass) of nucleon changes a
lot and comes close to its parity partner, which on the
contrary hardly changes from low temperature towards
chiral crossover temperature [2,57,58].
In Fig. 7, we also see that the scalar and pseudoscalar

screening masses in the ūd sector become degenerate
around T ∼ 200 MeV. Unfortunately, one cannot immedi-
ately draw any conclusions about an effective UAð1Þ
restoration from this due to the pathology of the ūd scalar
correlator that we have discussed above. However, as we
have already mentioned, the unphysical contribution can-
cels out if one would take the continuum limit for the
correlator first. Moreover, as the pion screening mass
increases around the crossover region while the continuum
scalar screening mass is expected to decrease around Tpc
before rising again at higher temperatures, this unphysical
decay channel might be closed around Tpc due to lack of
phase space. Therefore the degeneracy of the screening
masses in the S and PS channel around T ∼ 200 MeV is an
indication towards an effective restoration of the UAð1Þ.
Despite the above argument, we may nevertheless try and

estimate the effectiveUAð1Þ restoration temperature directly
from the correlators. Although it is difficult to calculate the
continuum limit of staggered correlators due to their
oscillating behavior, one may instead consider the corre-
sponding susceptibility, which is given by the integrated

FIG. 7. Continuum bands for screening masses of all four types of mesons for ūd, ūs, and s̄s (left to right).
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Recent results in finite temperature QCD
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QCD at finite density



What happens at finite density ?

Consider very dense QCD system

No positivity of  
Fermion determinant QCD inequality does not work.

Anomaly matching  
condition still works. The ground state is nontrivial.

BCS pairing of diquarks
Color superconductivity

u s
d

u s
d

u s
d

u s
d
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Bailin, Love ('84)

2SC dSC

uSC CFL

Iida, Matsuura, Tachibana, 
Hatsuda ('04)

μ

Fermi surface

3 ⊗ 3 = 6 ⊗ 3̄
Repulsive Attractive
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Attractive interaction

+

Unlike at finite ,  chiral restoration at finite density is nontrivial.T



Color superconductivity
CFL phase ●Chiral symmetry is spontaneously broken

u s
d

●gapped Baryons ~ quarks
●gapped vector mesons~ gluons
●Kaon are lighter than pions
Anomaly is matched by NG bosons

●  symmetry is spontaneously brokenU(1)B

2SC phase ●Chiral symmetry is unbroken 

u s
d ●There are massless and massive baryons ~quarks

Anomaly is matched by massless baryons

Chiral symmetry can be restored or spontaneously broken



Chiral condensate at finite density

Exciton Type
E

p

Dirac Type
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Density Wave Type
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BCS Type
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Recent Development  
in numerical calculations 



First-principle calculation
Complex fermion determinant 

Obstruction to Monte Carlo methodsSign problem

Toward a breakthrough:
●Complex Langevin method
●Lefschetz thimble method
●Tensor Network
●Quantum simulation



Tensor Network approach

Hamiltonian approach

Lagrangian approach
Tensor network renormalization group

|ψ⟩ = ∑
{ni}

Cn1n2⋯nN
|n1⟩⋯ |nN⟩

Application to Nonabelian gauge theory:  
2D pure Yang-Mills, Fukuma, Kadoh, Matsumoto (2021), Hirasawa, Matsumoto, Nishimura, Yosprakob (2021)
3D pure Yang-Mills, Kuwahara & Tsuchiya (2022), Okunishi, Yosprakob (2024)

Z = ∫ DAe−S[A]

Singular value  
decomposition Contraction

Coarse-graining lattice

Cn1n2⋯nN
≃

Coefficients are approximated by tensor network

E = min
C

⟨ψ |H |ψ⟩C is optimized s.t. d.o.fdN



 Hamiltonian Lattice simulation QCD2
with density matrix renormalization technique

Tomoya Hayata, YH, Nishimura, 2311.11643

Two color QCD Nf = 1

m = 1.0

Single baryon state Quark distribution function
dimℋ = 2300 dimℋ = 2300

Finite density
dimℋ = 2480



 Hamiltonian Lattice simulation QCD2

Tomoya Hayata, YH, Nishimura, 2311.11643

with density matrix renormalization technique

Three color QCD, Nf = 1 dimℋ = 2144

Pressure Quark distribution

Free baryon

Free quark



Inhomogeneous phase in QCD2
corresponding to ‘quarkyonic chiral spirals’ Kojo, Hidaka, McLerran, Pisarski (2010)

dimℋ = 2320

dimℋ = 2320

SU(2)

SU(3)

ΔΣ = ⟨q̄q(x)⟩ − ⟨q̄q(x)⟩μ=0



Quantum computing

●Natural method to solve quantum systems

So far, noise is large,  
the number of qubits are small.

i∂t |ψ⟩ = H |ψ⟩



Ion traps 
 (20 qubits)

QED (QZ3D)

Crippa, Jansen, Rinaldi, 2411.05628String breaking dynamics10

FIG. 13. Static potential results with H1-1E and H1-1:
The orange curve represents the noiseless results (error bars
smaller than the markers). For the results of the emulator
(triangles) we used 1024 shots for each coupling, while for
runs on H1-1 (circles and square) we used 512 shots. PMSV
and SPAM mitigations are considered for the first four cou-
plings g = 0.3, 0.7, 1.1, 1.5, (data indicated by (→)). The last
data point, at g = 1.9 has been found via the basis sampling
approach, selecting R = 4 dominant states, (data indicated
by (→R)) and it is a variational bound on the energy. The
inserted plot highlights the relative error ω between the data
points computed with H1-1E or H1-1 and the noiseless results
at g = 0.7, 1.1, 1.5.

the systematic errors if we consider multiple runs of the
hardware experiment. For other couplings, we have good
agreement on both the emulator and the hardware (blue
circles). Lastly, we note that the last point g = 1.9 is
only a variational bound on the expectation value, since
it is obtained by sampling in the computational basis and
considering only a subset of states for the calculation of
the energy [50]. For this reason we do not report the
statistical error due to the shots.

V. RESULTS: 4→ 3 LATTICE

This section studies the static potential for a larger 4→
3 lattice, as depicted in Fig. 14, where the static charges
are placed at a distance r = 3 onto the two fermionic
sites (nx, ny): Q = 1 ↑↓ (0, 1), Q = ↔1 ↑↓ (3, 1).

For this system we used a total of 24 qubits: 12 for the
fermionic sites and 2 · 6 for the six dynamical gauge links
(with truncation l = 1). We built the quantum circuit,
with a similar structure of the smaller lattice 3 → 2 (see
Fig. 26 in Appendix D). Table III shows the resources
needed for this quantum circuit. Note that the CNOT
depth for this system is more than doubled compared to
the 3→2 lattice, and the raw number of CNOT operations
is three times the one on the small system.

FIG. 14. Lattice system 4 → 3: Two static charges with
values Q ± 1 are placed onto two sites (nx, ny): Q = 1 ↑↓
(0, 1), Q = ↔1 ↑↓ (3, 1). The solid arrows represent the link
operator that remains dynamical after Gauss’s law is applied.

FIG. 15. Variational quantum results 4 → 3 system:
Static potential at di!erent coupling g at truncation l = 1
with ED (solid line) and quantum variational results (trian-
gles), performed with NFT optimizer and 104 shots. The
error bars are smaller than the markers.

Resource Estimation 4→ 3 OBC system
l # Qubits # CNOTs CNOT Depth # Parameters
1 24 450 136 81
3 30 582 186 123
7 36 738 238 177

TABLE III. Resources required for the variational cir-
cuit for Gray encoding: In a 4 → 3 OBC system with
fermions, the six dynamical gauge fields and fermionic sites
can be simulated with the specified total number of qubits.
In particular, the number of qubits for the fermions is fixed
to 12. Additionally, we quantify the total count of CNOT
gates and the CNOT depth, representing the layers of CNOT
gates in the circuit. The rightmost column displays the total
number of parameters in the variational Ansatz.

In Fig. 15 we illustrate the first attempt to compute the
static potential with this larger system and a quantum
variational approach. The uncertainties are computed

 system(4 × 3)
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FIG. 3. Adiabatic evolution of the baryon number B, the Gauss law
violation C, and the energy E as functions of the evolution length S.
The error bars represent statistical uncertainties, and the broken lines
show the exact values.

FIG. 4. Energy density ω and chiral condensate ! as functions
of baryon number density B/L. The simulation data at S = 10
are used. The error bars represent statistical uncertainties, and the
broken lines show the exact values.

VI. COMMENTS

The above computation is based on the gauge invariant
circuit of the evolution equation (30). Although the simu-
lation is, in principle, possible even if the gauge invariance
is lost, it will be less efficient. If the global gauge symme-
try is lost, the evolved state is not an eigenstate of the quark
number operators. One must compute the lowest eigenstate of
H → µ(Qu +Qd +Qs), instead of H , for many different val-
ues of µ. The quantum adiabatic algorithm assumes a nonzero
gap ! between the ground state and the first excited state and
its convergence speed is proportional to !2 [29]. The com-

FIG. 5. Transition points of baryon number density B/L. The sim-
ulation data at S = 10 are used. The error bars represent statistical
uncertainties. The broken line shows the exact functional form.

putational cost will be very large around the transition point
of µ, where the gap between B and B + 1 disappears. The
violation of the local gauge symmetry is more harmful. The
Gauss-law-violated evolution provides the lowest energy state
in the total Hilbert space, including both physical and unphys-
ical subspaces. The obtained state is physical only when the
unphysical ground state has higher energy than the physical
ground state. This condition is satisfied in the vacuum but
not satisfied for nonzero density states. The evolution must
be modified with a projection operator onto the physical sub-
space. This will cause extra computational costs.

The circuit is generalizable to ZN lattice gauge theory with
arbitrary N . The N -component diagonal matrix ” and its di-
agonalizing unitary matrix V can be written down and con-
structed in the same manner as Eq. (18). The increase of com-
putational cost is mild. For example, as for the comparison
between Z2 and Z3, exp(iωX) is replaced by Eq. (18) and
exp{iωZ(ε†

0ε1+ε
†
1ε0)} is replaced by Eq. (29). The former

increases the number of CNOT gates from two to three and the
latter increases from eleven to nineteen if the circuit is com-
piled with U gates and CNOT gates. Z3 lattice gauge theory
is still economical and the circuit is executable on near-term
devices. Note that the above circuit construction is general
but not necessarily the most optimal. More optimal circuits
can exist; e.g., see Ref. [24] for the case of Z2 lattice gauge
theory.
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computers are available in the future, the volume can be taken
larger and the thermodynamics limit can be extrapolated.

FIG. 3. Adiabatic evolution of the baryon number B, the Gauss law
violation C, and the energy E as functions of the evolution length S.
The error bars represent statistical uncertainties, and the broken lines
show the exact values.

FIG. 4. Energy density ω and chiral condensate ! as functions
of baryon number density B/L. The simulation data at S = 10
are used. The error bars represent statistical uncertainties, and the
broken lines show the exact values.

It is also possible to convert the density dependence to the
dependence on a quark chemical potential µ. At zero temper-
ature, the relation between B and µ is determined by mini-
mizing

!(B,µ) = E → µ(Nu +Nd +Ns). (37)

The second term is a constant without statistical error in the
fixed-quark-number simulation. The ground state for a given
µ has the smallest !(B,µ) among all B. A transition in B

happens at µ where !(B,µ) and !(B + 1, µ) intersect. Fig-
ure 5 shows the transition points obtained from the simulation
data. The plot is a sum of step functions in a finite box. In the
thermodynamic limit, it will become a frequently-seen plot of
a nonzero-density phase transition.

FIG. 5. Transition points of baryon number density B/L. The sim-
ulation data at S = 10 are used. The error bars represent statistical
uncertainties. The broken line shows the exact functional form.

VI. COMMENTS

The above computation is based on the gauge invariant
circuit of the evolution equation (30). Although the simu-
lation is, in principle, possible even if the gauge invariance
is lost, it will be less efficient. If the global gauge symme-
try is lost, the evolved state is not an eigenstate of the quark
number operators. One must compute the lowest eigenstate of
H → µ(Qu +Qd +Qs), instead of H , for many different val-
ues of µ. The quantum adiabatic algorithm assumes a nonzero
gap ” between the ground state and the first excited state and
its convergence speed is proportional to ”2 [41]. The com-
putational cost will be very large around the transition point
of µ, where the gap between B and B + 1 disappears. The
violation of the local gauge symmetry is more harmful. The
Gauss-law-violated evolution provides the lowest energy state
in the total Hilbert space, including both physical and unphys-
ical subspaces. The obtained state is physical only when the
unphysical ground state has higher energy than the physical
ground state. This condition is satisfied in the vacuum but
not satisfied for nonzero density states. The evolution must
be modified with a projection operator onto the physical sub-
space. This will cause extra computational costs.

Although our simulation is the classically emulated one, the
same simulation will be possible on real qubit devices. The
required number of qubits is 6L + 2(L → 1) = 22. To our
knowledge, the optimal number of CNOT gates is 3(L → 1)
for Eq. (18), 2L for Eq. (28), 19(L→ 1) for Eq. (29), and thus
29L→ 25 for each step of the evolution operator decomposed
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Baryon number 
 density

, 3-sites(1 + 1)d
Noiseless simulator

Three flavor QZ3D

Quantum adiabatic algorithm



QCD is a fundamental theory of strong interactions  
   ● Describes quarks and gluons with SU(3) gauge symmetry. 
   ● Key features: confinement, chiral symmetry breaking.

Understanding QCD in medium is a frontier of hadron physics  
  ● High T: chiral restoration (crossover). 
  ● High μ: color superconductivity. 
  ● Neutron star observations constrain EOS.

New approaches are needed for intermediate density  
   ● Sign problem limits lattice QCD. 
   ● Tensor networks and quantum computing are new promising tools.

Summary


