Toward Understanding Dense QCD Matter

Yoshimasa Hidaka (YITP, Kyoto University)

QCD phase diagram

Neutron Star Physics: Diverse Observations

Constraint of EOS from Observations

Low density: Nuclear Phys. High density: pQCD

> s the Intermediate **Density Regime?**

Pan of this talk

 Basics of QCD Vacuum property • QCD finite temperature • QCD finite density Development of numerical simulations • Summary

Quantum Chromo Dynamics SU(3) gauge theory $\mathscr{L} = \sum \left(\bar{q}_R D q_R + \bar{q}_L D q_L - m_q (\bar{q}_R q_L + \bar{q}_L q_R) \right) - \frac{1}{\Lambda} G^a_{\mu\nu} G^{\mu\nu,a}$

qwhere $D = \gamma^{\mu} (i\partial_{\mu} + gA_{\mu})$ quarks

massive, spin 1/2 Representation: 3 (R,G,B)

gluons

massless, spin 1 8

Property of gauge theory Gauge symmetry: **Color RGB is not observable** Gauge symmetry cannot be spontaneously broken

Gauge invariant degrees of freedom

quark

quark

electric flux

quark

Possible phases of QCD

 Confinement phase Deconfinement phase Higgs phase (superconducting phase) Topological phase and

Deconfinement phase Consider a pair of test charge

Color deconfinement At long distance the energy is finite and color flux exists between test charges. (Topological ordered exhibits similar property)

Confinement phase Consider a pair of test charge

Confinement (narrow sense) At long distance the energy diverges. This is well-defined if $m_q \rightarrow \infty$

Confinement phase Consider a pair of test charge

Confinement (narrow sense) At large distances, the energy diverges. This is well-defined in the limit $m_q \rightarrow \infty$ **Confinement (broad sense)** At large distances, color flux between test charges vanishes. This is the case for QCD. However, this cannot distinguish between confinement and Higgs phases

Confinement and Higgs are similar to liquid and gas Physical property may be different between two phases, but it will be smoothly connected (Fradkin–Shenker '79).

Q

Global symmetry $SU(N_f)_R \times SU(N_f)_L \times U(1)_V \times U(1)_A$

Chiral symmetry At $m_q \rightarrow 0$ $\mathscr{L} = \sum \left(\bar{q}_R D q_R + \bar{q}_L D q_L \right) - \frac{1}{\Lambda} G^a_{\mu\nu} G^{\mu\nu,a}$

 $U(1)_A \rightarrow \mathbb{Z}_{2Nf}$: Explicit breaking by anomaly $SU(N_f)_R \times SU(N_f)_L \rightarrow SU(N_f)_V$: Spontaneous breaking

Chiral anomaly Ex) (1+1) Dirac Fermion EE**Electric field**

 $\Delta Q = \Delta Q_R + \Delta Q_L = 0$ $\Delta Q_5 = \Delta Q_R - \Delta Q_L = \pi$

Q: Why is the vacuum condensate scalar?

and its combination can be condensed.

Q: Is a parity odd vacuum possible? No, parity cannot be broken in the QCD vacuum Vafa-Witten theorem

Vafa, Witten, PRL53, 535 (1984)

derived from positivity of quark determinant det(D - m) > 0 $D = -D^{\dagger} \gamma_5 D = -D\gamma_5$

Isospins are also unbroken Vafa, Witten, Nucl. Phys. B234, 173 (1984)

Vacuum property Vacuum: Lorentz invariant: $P_{\mu} | \Omega \rangle = 0 J_{\mu\nu} | \Omega \rangle = 0$

Only scalar~1, symmetric tensor~ $\eta_{\mu\nu}$, four rank antisymmetric tensor ~ $\epsilon_{\mu\nu\rho\sigma}$

(Vector-like gauge theories with $\theta = 0$)

Existence of chiral anomaly: The vacuum can not be trivially gapped:

Chiral symmetry breaking Baryon is massless Other symmetry breaking Topological phase, CFT, ...

Vacuum property Q. How about chiral symmetry? A. Chiral symmetry need to be spontaneously broken

- The low-energy effective theory need to match the anomaly 't Hooft ('80)

Vacuum property

Baryon cannot be massless for $N_f = 3$ Chiral symmetry breaking

Positivity of quark determinant implies

- **Baryons satisfy** $m_B \ge \frac{3}{2}m_{\pi}$ Nussinov('83)
- Baryons cannot be massless as long as $m_{\pi} \neq 0$ Therefore, chiral symmetry breaking is natural

At finite T Chiral symmetry restoration **Order parameter vanishes** $\langle \bar{q}q \rangle \rightarrow 0$

What happens at finite T and μ ?

- Order parameter (universally) vanishes at high T

 - $SU(N_f)_R \times SU(N_f)_L$ become good quantum number
 - Degeneracy of spectra (σ , π^a), (ρ^a , a_1^a), ...
- Anomaly matching does not impose a constraint (Instead, it leads to chiral magnetic and vortical effects.)

Results from Lattice QCDChiral condensateScreening mass

Recent results in finite temperature QCD Columbia Plot

Continuum limit $a \rightarrow 0$

Kuramashi et al ('20) **1st order region** shrinks as $a \rightarrow 0$ Cuteri et al ('21) no 1st order region for Staggered Fermion Dini et al (22') **Consistent with no 1st order** for improved Staggered Fermion

c.f. non lattice study: Fejos ('22), Kousvos, Stegio ('23), Pisarski, Rennecke ('23), Fejos, Hatsuda ('24)

QCD at finite density

What happens at finite density? No positivity of QCD inequality does not work. **Fermion determinant** Anomaly matching The ground state is nontrivial. condition still works. Unlike at finite T, chiral restoration at finite density is nontrivial. **Consider very dense QCD system Color superconductivity** Fermi surface **Attractive interaction BCS** pairing of diquarks **2SC** dSC Bailin, Love ('84) lida, Matsuura, Tachibana $3 \otimes 3 = 6 \otimes$ Hatsuda ('04)

Repulsive Attractive

uSC

Alford, Rajagopal, Wilcheck ('99)

Color superconductivity

CFL phase

2SC phase

 Chiral symmetry is spontaneously broken • $U(1)_R$ symmetry is spontaneously broken gapped Baryons ~ quarks •gapped vector mesons~ gluons •Kaon are lighter than pions Anomaly is matched by NG bosons Chiral symmetry is unbroken •There are massless and massive baryons ~quarks Anomaly is matched by massless baryons

Chiral symmetry can be restored or spontaneously broken

Chiral condensate at finite density

CFL senario $\langle \bar{q}q \rangle pprox 0$ $\left< (\bar{q}q)^2 \right> \neq 0$

Quark hadron continuity

Vector meson

antiquark quark

Chiral restoration senario

Schafer and Wilczek, PRL 82, 3956(1999) Hatsuda, Tachibana, Yamamoto, Baym, PRL 97 122001 (2006)

CFL senario

Recent Development in numerical calculations

First-principle calculation **Complex fermion determinant** Sign problem Obstruction to Monte Carlo methods Toward a breakthrough: Complex Langevin method OLefschetz thimble method **Tensor Network** Quantum simulation

Tensor Network approach Lagrangian approach **Tensor network renormalization group**

Application to Nonabelian gauge theory: 2D pure Yang-Mills, Fukuma, Kadoh, Matsumoto (2021), Hirasawa, Matsumoto, Nishimura, Yosprakob (2021) 3D pure Yang-Mills, Kuwahara & Tsuchiya (2022), Okunishi, Yosprakob (2024)

Hamiltonian approach $C_{n_1n_2\cdots n_N} | n_1 \rangle \cdots | n_N \rangle$ $|\psi\rangle$ = $\{n_i\}$ d^N d.o.f

Coarse-graining lattice

Coefficients are approximated by tensor network

 $n_1 n_2 \cdots$

C is optimized s.t. $E = \min\langle \psi | H | \psi \rangle$

QCD₂ Hamiltonian Lattice simulation with density matrix renormalization technique

Two color QCD $N_f = 1$

Single baryon state

 $\dim \mathscr{H} = 2^{300}$

Tomoya Hayata, YH, Nishimura, 2311.11643

Quark distribution function

 $\dim \mathscr{H} = 2^{300}$

Finite density $\dim \mathscr{H} = 2^{480}$

QCD₂ Hamiltonian Lattice simulation with density matrix renormalization technique

Three color QCD, $N_f = 1$ dim $\mathcal{H} = 2^{144}$

Tomoya Hayata, YH, Nishimura, 2311.11643

Quark distribution

Inhomogeneous phase in QCD $_{2}$ corresponding to 'quarkyonic chiral spirals' Kojo, Hidaka, McLerran, Pisarski (2010)

 Natural method to solve quantum systems So far, noise is large, the number of qubits are small.

Quantum computing

ent Results amics Crippa, Jansen, Rinaldi, 2411.05628

10

attice gauge theory at nonzero baryon density Hidaka, Yamamoto 2409.17349

S

Summary

QCD is a fundamental theory of strong interactions Describes quarks and gluons with SU(3) gauge symmetry. • Key features: confinement, chiral symmetry breaking. • High T: chiral restoration (crossover). • High μ : color superconductivity. Neutron star observations constrain EOS. New approaches are needed for intermediate density • Sign problem limits lattice QCD.

- Understanding QCD in medium is a frontier of hadron physics

 - Tensor networks and quantum computing are new promising tools.

