Hyperon potentials in dense matter from chiral EFT evaluated via heavy-ion collisions

Asanosuke Jinno(神野朝之丞, Kyoto Univ.)

in collaboration with Koichi Murase (Tokyo Metropolitan Univ.) Yasushi Nara (Akita International Univ.) Johann Haidenbauer (Forschungszentrum Jülich, Germany)

- Hyperon puzzle of neutron stars and Λ potential
- Λ and Σ potentials by chiral YN+YNN forces at NLO
- Λ and Σ directed flows

HIN2025, YITP, April 2-4, 2025

Hyperon puzzle of neutron stars

- (1990-) <u>Hyperons appear within 2 4ρ₀</u> in neutron star matter, often resulting in softening of equation of state.
 e.g. S. Nishizaki, T. Takatsuka, and Y. Yamamoto, Prog. Theor. Phys. 108 (2002) 703.
- The softening problem becomes more serious since the observation of the massive (2M_☉) neutron stars first reported in 2010.

Neutron star mass (Solar mass M_o)

Example of solutions:

- 1. <u>Suppressing the appearance of hyperons: Repulsive YNN</u> and/or YY forces
- **2.** Avoiding phase transition: Quarkyonic matter, quark-hadron continuity e.g. Baym, Hatsuda, Kojo, Powell, Song, & Takatsuka (2018)

YNN three-body force from chiral EFT

• Phenomenological YNN three-body force in dense matter Nishizaki, Yamamoto, &

Takatsuka (2002); Lonardoni et al. (2015); Togashi, Hiyama, Yamamoto, & Takano (2016); Friedman & Gal (2023) etc.

 Chiral effective field theory (NLO YN + NLO promoted YNN via decuplet saturation) Kohno(2018), <u>D. Gerstung, N. Kaiser, and W. Weise (2020)</u>

Our previous studies

We have verified that the Λ single-particle potential strongly repulsive at high densities is <u>consistent with two experimental data</u>.

binding energies.

All hyperons feel the same potential as Λ one.

Σ potential should be implemented!

- Y. Nara, <u>AJ</u>, K. Murase, & A. Ohnishi, PRC 106, 044902(2022).
 <u>All hyperons</u> and their resonances feel <u>same</u> single-particle potential as Λ.
- The Λ and Σ single-particle potentials have a completely different behavior as reflected in the empirical values:

 $U_\Lambda(\rho_0) \approx -30$ MeV (Λ hypernuclear spectroscopy) $U_\Delta(\rho_0) = 30 \pm 20$ MeV (based on Σ⁻ atom data and (π^+, K^+) inclusive spectra)

A. Gal, E. V. Hungerford, & D. J. Millener (2016).

• The current Λ directed flow is calculated as the $\Lambda + \Sigma 0$ directed flow. cf. $\Sigma^0 \rightarrow \gamma + \Lambda$ (~100%)

Σ potential may affect the $\Lambda + \Sigma^0$ dynamics in heavy-ion collisions and can be constrained by data!

Purpose of this research

Calculating the Σ potential in nuclear matter based on chiral EFT.
 Implementing the Σ potential to JAM2 and examining its dependence on the Λ+Σ0 directed flow.

A and Σ potentials with chiral YN+YNN forces at NLO

YNN force within chiral EFT (1/2)

YNN force within chiral EFT (2/2)

- <u>Decuplet saturation</u>: inserting decuplet baryons
 - S. Petschauer, J. Haidenbauer, N. Kaiser, U.-G. Meißner, & W. Weise (2017)

NLO13(500) YN + YNN

1()

AJ, K. Murase, and Y. Nara, arXiv:2501.09881 (2025) (Proceeding for EXA/LEAP2024)

A. Gal, E. V. Hungerford, & D. J. Millener (2016).

Λ and Σ directed flows

Directed flow v_1 ($\sqrt{s_{NN}} \approx 3-5$ GeV) 13

- The anisotropic collective flow v_n = (cosnφ) has been extensively investigated to extract the properties of dense matter equation of states.
 Recent review: A. Sorensen et al., Prog. Part. Nucl. Phys. 134 (2024) 104080.
- Directed flow: $v_1 = \langle \cos \phi \rangle = \langle p_x / p_T \rangle$ as a function of the rapidity $y = \tanh^{-1} \left(\frac{p_z}{E} \right)$ $(p_T^2 = p_x^2 + p_y^2)$

 v_1 has a non-trivial dependence on EOS.

Proton directed flow v_1

• Proton directed flow slope dv_1/dy exhibits sign change at $\sqrt{s_{NN}} = 11.5$ GeV. STAR Collaboration, Phys. Rev. Lett. 112 (2014) 162301.

Signal of the 1st order phase transition?

• In 2022, it is shown $\sqrt{s_{NN}}$ dependence of proton v1 can be <u>explained without phase transition</u> by the relativistic quantum molecular dynamics model with the Lorentzvector potential (RQMDv) implemented in JAM2. Y. Nara and A. Ohnishi, PRC (2022) <u>https://gitlab.com/transportmodel/jam2</u> Let's discuss hyperon $v_1!$ (Note) Possibility of 1st PT is not excluded.

Extensions in JAM2 after Nara et al. (2022) ¹⁵

Several updates have been made after the Λ v1 paper:

Y. Nara, AJ, K. Murase, & A. Ohnishi, PRC 106, 044902(2022).

Covariant collision term

Y. Nara, <u>AJ</u>, T. Maruyama, K. Murase, and A. Ohnishi, Phys. Rev. C 108, 024910 (2023).

- <u>New covariant RQMD model (RQMDv2)</u> <u>QM2025 Poster</u>
 - Y. Nara, AJ, K. Murase, in preparation.
- <u>YN cross section by chiral N2LO</u>
 Some ΣN cross sections are decreased.

 $\Sigma 0 v1$ is influenced to some extent, while $\Lambda + \Sigma 0 v1$ is similar.

Σ single-particle potentials

For fitting procedure, see Y. Nara, AJ, K. Murase, & A. Ohnishi, PRC 106, 044902(2022).

Can this difference be found in hyperon directed flows?

Λ+Σ0 v1 at $\sqrt{s_{NN}}$ =4.5 GeV

Inclusion of \Sigma potential decreases v1.

 \therefore The Σ repulsion suppresses v1 in the expansion stage by forming the tilted matter.

Comparison to the previous results

Current models

Y. Nara, AJ, K. Murase, A. Ohnishi, Phys. Rev. C 106, 044902 (2022).

All hyperons and their resonances feel same potential.

Hard momentum dependence

Soft momentum dependence

<u>New models</u>

18

New RQMD, chiral N2LO YN cross sections, Sigma potential

<u>Lambda + Sigma</u> potentials

Lambda potential for all hyperons

Rapidity $y = \tanh^{-1}\left(\frac{p_z}{F}\right)$

Sigma potential has influence as the same level as the uncertainty in the momentum dependence.

Σ0 v1 at $\sqrt{s_{NN}}$ = 4.5 GeV

The v1 difference is more significant for $\Sigma 0$ than for $\Lambda + \Sigma 0$.

Σ potential still has large uncertainty. Cf. Empirical value of the Σ potential: $U_{\Sigma}(\rho_0) = 30 \pm 20 \text{ MeV}$ A. Gal, E. V. Hungerford, & D. J. Millener (2016).

Σ potential can be constrained via **Σ** v1!

Sigma0 reconstruction in Ag+Ag collisions at 1.58 A GeV with HADES Marten Becker (Giessen) at SQM2024

WIP projects for quantitative modeling 20

Calculating hyperon potentials with <u>chiral N2LO YN+YNN</u>
 YN: J. Haidenbauer, U.-G. Meißner, A. Nogga, & H. Le, Eur. Phys. J. A 59 (2023) 3, 63.
 YNN: working with Johann Haidenbauer.

 Implementing potentials of hyperon resonances (Y*) by employing the parity doublet model with Y. Nara and K. Murase

 To avoid the uncertainty in Y*, lower collision energy (HADES energy) may be preferred.

Summary

- The Λ single-particle potential is a key to solve the hyperon puzzle of neutron stars.
- NLO13(500) YN and YNN forces based on the decuplet saturation:
 NLO13 YN force results in the strongly repulsive Λ potential that <u>avoids the hyperon</u> puzzle and is consistent with the empirical value of the <u>Σ single-particle potential</u>.
- Several updates have been made to the event generator JAM2.
- <u>The Λ (+Σ0) directed flow</u> is sensitive to the Σ potential and can be used to <u>constrain the</u> <u>hyperon potentials in dense matter</u>.

Future work

- Calculating hyperon potentials with chiral N2LO YN+YNN
- Implementing potentials of hyperon resonances (Y*)