- H dibaryon constrained by hypernuclei Hadrons In Nuclei Workshop, Kyoto, Japan, April 2025 Avraham Gal, Hebrew University, Jerusalem, Israel
- Q: does observing $\Lambda\Lambda$ hyp exclusively by weak decay $(\tau_w \sim 10^{-10} \text{ s})$ rule out a deeply bound H(uuddss) ?
- A: ${}_{\Lambda\Lambda}{}^{6}$ He 3-body model gives $\tau_{s}({}_{\Lambda\Lambda}{}^{6}$ He \rightarrow H+⁴He) \gg τ_{w} for $m_{H} \leq m_{\Lambda} + m_{n}$, so a deeply bound H is fine.
- Q: how slow is the $\Delta S=2$ weak decay H $\rightarrow 2n$ with respect to τ (Universe) \approx (13.8 × 10⁹ yrs) ?
- A: constrained by Λ hyp lifetimes, $\tau_w(H \rightarrow 2n) \sim 10^5$ s, by far too short to make H dark-matter candidate.

A. Gal, PLB 857 (2024) 138973 [arXiv:2404.12801]

$\begin{array}{l} \label{eq:holestop} \mbox{The elusive H dibaryon} \\ \mbox{A stable H(uuddss) predicted by Jaffe PRL 38 (1977) 195} \\ \mbox{H} \sim \mathcal{A}[\sqrt{1/8} \ \Lambda\Lambda + \sqrt{1/2} \ N\Xi - \sqrt{3/8} \ \Sigma\Sigma,]_{I=S=0} \end{array}$

- No H signal in past (K^-, K^+) experiments at AGS-BNL & PS-KEK. Awaiting J-PARC E42.
- Bound H above $\Lambda p\pi^-$, ~37 MeV below $\Lambda\Lambda$, ruled out by ALICE search for a weakly decaying $\Lambda\Lambda$ bound state [PLB 752 (2016) 267].
- Bound H above $\Lambda p\pi^-$ ruled out in Belle study of $\Upsilon(1S,2S)$ decays [PRL 110 (2013) 222002].
- Deeply bound H below Λn , $m_H \leq 2.05$ GeV, ruled out in BaBar's $\Upsilon(2S,3S) \rightarrow H\overline{\Lambda}\overline{\Lambda}$ search [PRL 122 (2019) 072002].

- Bound H in LQCD calculations: S.R. Beane et al (NPLQCD) PRL 106 (2011) 162001, T. Inoue et al. (HALQCD) PRL 106 (2011) 162002, Green-Hanlon-Junnarkar-Wittig, PRL 127 (2021) 242003, bound by just 4.6±1.3 MeV w.r.t. ΛΛ.
- But unbound by 13±14 MeV when chirally extrapolated to physical quark masses: Shanahan-Thomas-Young, PRL 107 (2011) 092004.
- SU(3)_f breaking might push it to ≈26 MeV in the ΛΛ continuum, near NΞ threshold: HALQCD Collaboration [NPA 881 (2012) 28] & Haidenbauer-Meißner [NPA 881 (2012) 44].

Hypernuclear Constraints: Nagara event

⁶_{AA}He (KEK-E373) PRL 87 (2001) 212502, PRC 88 (2013) 014003 $B_{AA}({}_{AA}{}^{6}\text{He}_{g.s.})$ =6.91±0.16 MeV, uniquely identified.

- A: Ξ^- capture $\Xi^- + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + t + \alpha$
- B: weak decay ${}^{6}_{\Lambda\Lambda}\text{He} \rightarrow {}^{5}_{\Lambda}\text{He} + p + \pi^{-}$ (no ${}^{6}_{\Lambda\Lambda}\text{He} \rightarrow {}^{4}\text{He} + \mathbf{H}$)
- C: ${}_{\Lambda}^{5}$ He nonmesic weak decay to two Z=1 recoils + n Few other weakly decaying ${}_{\Lambda\Lambda}^{A}$ Z hypernuclei identified.

Dark-Matter H Dibaryon?

Work triggered by Farrar's 2003-4 idea that a deeply bound H dibaryon would make a long-lived Dark-Matter particle.

G.R. Farrar, Int'l. J. Theor. Phys. 42 (2003) 1211.
G.R. Farrar, G. Zaharijas, Phys. Rev, D 70 (2004) 014008.
A recent review: G.R.F+Z. Wang, arXiv:2306.03123 [hep-ph].
assuming (i) compact 6q configurations of size down to 0.2 fm and (ii) outdated hard-core BB strong-interaction potentials. Here, we try to do better...

H(uuddss) model wavefunction

- Symmetric L=0, Antisymmetric $\mathbf{1}_S(S=0), \mathbf{1}_F, \mathbf{1}_C$.
- $\Psi_H = N_6 \exp\left(-\frac{\nu}{6}\sum_{i< j}^6 (\vec{r}_i \vec{r}_j)^2\right)$
- $\Psi_H = \psi_{B_a}(\rho_a, \lambda_a) \times \psi_{B_b}(\rho_b, \lambda_b) \times \psi_{B_aB_b}(r)$
- $\psi_{B_aB_b} = \left(\frac{3\nu}{\pi}\right)^{\frac{3}{4}} \exp\left(-\frac{3\nu}{2}r^2\right)$, Need to add SFC factors.
- $< r_{B_a}^2 > = < r_{B_b}^2 > = < r_{B_aB_b}^2 > = \frac{9}{8\nu}, \quad < r_H^2 > = \frac{5}{8\nu}.$

$\sqrt{< r_{\Lambda\Lambda}^2 >}$	(fm) v	s. $B_{\Lambda\Lambda}$	(MeV)
-----------------------------------	--------	-------------------------	-------

$B_{\Lambda\Lambda}$	5	20	50	100	200	300	400
$\sqrt{< r_{\Lambda\Lambda}^2 >}$	2.134	1.206	0.854	0.689	0.560	0.501	0.463
calcula	ted for	a short-	-range j	potentia	$\mathbf{l} \ C_0^{(\lambda)} \delta_{\lambda}$	$(r), \lambda = 4$	\mathbf{fm}^{-1} ,
\mathbf{w}	here	$\delta_{\lambda}(r) = \left(\frac{1}{2}\right)$	$\left(\frac{\lambda}{2\sqrt{\pi}}\right)^3 \mathrm{ex}$	$p\left(-\frac{\lambda^2}{4}r^2\right)$	$), \int \delta_{\lambda}($	r) d ³ $r=1$	•

${}_{\Lambda\Lambda}^{6}{\rm He}$ model wavefunction

- Use a $\Lambda \Lambda {}^{4}$ He model inspired by a #EFT study of s-shell $\Lambda\Lambda$ hypernuclei in PLB 797 (2019) 134893 by Contessi-Schaefer-Barnea-Gal-Mareš.
- $\Phi_{\Lambda\Lambda^6 \text{He}} = \phi_{\Lambda\Lambda}(r_{\Lambda\Lambda}) \Phi_{\Lambda\Lambda}(R_{\Lambda\Lambda}) \phi_{\alpha}, \quad \sqrt{\langle r_{\Lambda\Lambda}^2 \rangle} = 3.65 \pm 0.10 \text{ fm.}$
- For Gaussians, $\sqrt{\langle R_{\Lambda\Lambda}^2 \rangle} = \sqrt{\langle r_{\Lambda\Lambda}^2 \rangle}/2$.
- Short-Range suppression: *φ*_{ΛΛ}(r_{ΛΛ}) = (1 - j₀(κr_{ΛΛ})) φ_{ΛΛ}(r_{ΛΛ}), κ=2.534 fm⁻¹ fitting a G-matrix calculation by Maneu-Parreño-Ramos, PRC 98 (2018) 025208.
- To evaluate ${}_{\Lambda\Lambda}{}^{6}$ He $\rightarrow H + {}^{4}$ He decay rate (next page), represent final state by $\tilde{\psi}_{\Lambda\Lambda}(r_{\Lambda\Lambda}) \times \exp{(i\vec{k}_H \cdot \vec{R}_H)}$, where $\tilde{\psi}_{\Lambda\Lambda}(r_{\Lambda\Lambda}) = \psi(r_{\Lambda\Lambda})/\sqrt{1000}$ to account for SFC structure.
- Recall: no short-range suppression for H (1_F BB).

${}_{\Lambda\Lambda}{}^{6}$ He $\rightarrow H + {}^{4}$ He decay rate

- $\Gamma({}^{6}_{\Lambda\Lambda}\text{He} \to H + {}^{4}\text{He}) = \frac{\mu_{H\alpha}k_{H}}{(2\pi\hbar c)^{2}}\int |\langle \Psi_{f}|V_{\Lambda\Lambda}|\Psi_{i}\rangle|^{2} \,\mathrm{d}\vec{k}_{H},$ where $\langle \Psi_{f}|V_{\Lambda\Lambda}|\Psi_{i}\rangle$ is a product of two factors.
- 1st factor: $\langle \tilde{\psi}_{\Lambda\Lambda} | C_0^{(\lambda=4)} \delta_{\lambda=4}(r_{\Lambda\Lambda}) | \tilde{\phi}_{\Lambda\Lambda} \rangle$, where $C_0^{(\lambda=4)} = -152 \text{ MeV} \times \text{fm}^3$ fitted to $a_{\Lambda\Lambda} = -0.8 \text{ fm}$. SRC reduction: a factor of 4 to 5. Altogether this matrix element varies from -59 to -53 keV as $B_{\Lambda\Lambda}$ is increased from 100 to 400 MeV.
- 2nd factor: $\int \exp(i\vec{k}_H \cdot \vec{R}) \Phi_{\Lambda\Lambda}(R) d^3\vec{R}$, overlap integral between a $\Lambda\Lambda - \alpha$ smooth Gaussian $\Phi_{\Lambda\Lambda}(R_{\Lambda\Lambda})$ in ${}_{\Lambda\Lambda}{}^6$ He and the $H - \alpha$ oscillatory plane-wave $\exp(i\vec{k}_H \cdot \vec{R}_H)$. Strong cancellations occur, reducing it as k_H increases.

$B_{\Lambda\Lambda}$ (MeV)	$\mathbf{k}_{H}~(\mathbf{fm}^{-1})$	Γ (eV)	au (s)			
100	2.547	$0.782 \cdot 10^{-2}$	$0.841 \cdot 10^{-13}$			
200	3.612	$0.501 \cdot 10^{-8}$	$1.315 \cdot 10^{-7}$			
300	4.377	$0.679 \cdot 10^{-14}$	$0.970 \cdot 10^{-1}$			
400	4.980	$2.436 \cdot 10^{-20}$	$2.703 \cdot 10^4$			
176	3.393	$1.550 \cdot 10^{-7}$	$4.245 \cdot 10^{-9}$			
$B_{AA} = 176 \text{ MeV corresponds to } m_{H} = m_{A} \pm m_{A}$						

 ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow H + {}^{4}\text{He} \text{ decay rate } \Gamma \text{ and decay time } \hbar/\Gamma.$

 $B_{\Lambda\Lambda} = 170$ MeV corresponds to $m_H = m_{\Lambda} + m_n$.

- ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow H + {}^{4}\text{He}$ strong-interaction lifetime becomes longer than Λ hypernuclear lifetimes of order 10^{-10} s for m_H below $m_{\Lambda} + m_n$, where decay of H requires a $\Delta S = 2$ weak decay H \rightarrow nn, assuming H is above nn.
- A lower-mass H would be in conflict with nuclear stability limits, e.g. ¹⁶O.

 $\Lambda n \to nn \text{ and } \Lambda \Lambda \to nn \text{ weak decays}$

- Figure shows how free-space $\Lambda \to n\pi^0$ weak decay vertex is embedded in one-pion exchange (OPE) diagrams for $\Delta S = 1 \ \Lambda n \to nn$ and $\Delta S = 2 \ \Lambda \Lambda \to nn$ weak transitions in hypernuclei or in H decay.
- For ¹S₀ → ¹S₀ transitions, OPE contributes little at the large momentum transfers involved; K exchange interferes destructively with OPE in Λn → nn, so a contact term is sufficient. ¹S₀ → ³P₀ appears suppressed w.r.t. ¹S₀ → ¹S₀.

$\Lambda n \to nn$ and $\Lambda \Lambda \to nn$ weak decays

- Use low-energy constants (LECs) $C_{\Delta S}^{(\lambda)}$ proportional to g_w for $\Lambda n \to nn$ and to g_w^2 for $\Lambda \Lambda \to nn$ in 1S_0 transitions, thereby replacing $g_s(\text{OPE}) \approx 13.6$ effectively by $g_s \sim 1$.
- EFT approach for nonmesonic weak decay of hypernuclei: Parreño-Bennhold-Holstein, PRC 70 (2004) 051601(R).

 $au_{H} (10^{5} \text{ s})$ k_n (fm⁻¹) $\Gamma_{H} (10^{-20} \text{ eV})$ $B_{\Lambda\Lambda}$ (MeV) 176 2.109 $1.57{\pm}0.19$ $0.78 {\pm} 0.09$ $\mathbf{200}$ $1.44{\pm}0.17$ $0.83{\pm}0.10$ 1.955**300** $0.86 {\pm} 0.10$ 1.130 $1.35{\pm}0.16$

H \rightarrow nn decay rate Γ_H and decay time $\tau_H = \hbar / \Gamma_H$

 $B_{\Lambda\Lambda}=176$ MeV corresponds to $m_H=m_{\Lambda}+m_n$.

• Extract $C_1^{(\lambda)}$ for a given λ by evaluating $\Gamma_n(C_1)$, $\Gamma_n = v_{\Lambda n} \sigma_{\Lambda n \to nn} \frac{1}{4} \rho_n$, requiring $\Gamma_n = (0.35 \pm 0.04) \Gamma_{\Lambda}$ where $\Gamma_{\Lambda} = \hbar/(\tau_{\Lambda} = 263 \text{ ps})$.

• Use
$$C_2^{(\lambda)} = g_w C_1^{(\lambda)} = (G_F m_\pi^2) C_1^{(\lambda)} = (2.21 \times 10^{-7}) C_1^{(\lambda)}$$
.

- $\Gamma(H \to nn) = \frac{\mu_{nn} k_n}{(2\pi\hbar c)^2} \int |\langle \exp(i\vec{k}_n \cdot \vec{r})|C_2^{(\lambda)}\delta_\lambda(\vec{r})|\tilde{\psi}_{\Lambda\Lambda}(r)\rangle|^2 d\vec{k}_n.$
- Weaker cancellations over a smaller range than for $\Gamma({}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow \text{H} + {}^{4}\text{He}).$

Deeply Bound H Dibaryon: Summary

- Observing ΛΛ hypernuclei by their weak decay does not rule out a deeply bound H(uuddss) dibaryon.
- Assuming H is deeply bound, between nn and An thresholds, its ∆S = 2 H→nn lifetime is shorter than 1 yr, disqualifying it from serving as a Dark-Matter particle candidate.

Thanks for your attention!