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= strong interaction between the orbiting hadron and the core nucleus
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CERN PS209 (investigation of nuclear periphery)

A. Trzcinska et al., Hyperfine Interact. 194 (2009) 271
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improve the x2/ndf in the global fit.
Many literatures ignores the isovector term.

Levels are sensitive only to extremely outer,
low density (<0.1po) regions, where neutrons
dominate over protons.
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Precision Spectroscopy of antiprotonic calcium
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goal: determine b, and b, for p — Ca system using nuclear densities,
more realistic than two-parameter Fermi distributions.




Closer look at PS209 calcium results
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FIG. 1. Spectra of antiprotonic x rays from calcium. Upper part:
spectrum from “*Ca. Lower part: accumulated spectrum of all tar-
gets; the weights of the different calcium 1sotopes are for
“Ca: 27%,"Ca: 18%,%Ca: 3%,*Ca: 24%, and for **Ca: 28%

(determined from the number of antiprotons per isotope given in
Table I).

Institute of

: SCIENCE TOKYO

£ (eV)
weighted average for **=%Ca |
ol bo Only
1 = 3 4 5 6 10l + T
n=8 -20 !
4 30| L + }
/ I
=7 / -40 [ b ] b
n /’// S 50! 0 “1
/ // -60 [ ®
n=6 /y ol
1 NI =0.084(13) eV o0l
///// 100}
-sﬁié N\ e = 26(12) eV TA0 41 42 43 44 45 46 47 48
['=35(6) eV A
€=10.4(4) keV
= I =2.8(15) keV
/
¥ Only the averaged width was deduced.

How about mass-number dependence?

F. J. Hartmann et al., Phys. Rev. C 65 (2001) 014306



4nr’(pn(r) = pp(r) (fm ™)

—-0.20

- - ’ Institute of
Up-to-date theoretical calculation g SCIENCE TOKYO
isovector density optical potential (w/ b; term) K. Yoshimura, S. Yasunaga, D. Jido,
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to account for the “’Ca — #3Ca difference

TABLE V. The strong shift for n = 5 and level width for n = 6 1in a
unit of eV, with respect to optical parameter sets. The second to the

third column, the result of *°Ca is provided, for the 3pF density. The
fourth to fifth column exhibit the counterpart of “*Ca with the 3pF-

3.0 density. At the bottom line the experimental result[54] 1s shown.
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TABLE I. The optical potential parameter sets used in this work. *0Ca 48 Ca
bo (fm) b1 (fm) co (fm”) €n=5 LI'n=6¢  €n=s5  DI'n=g
Typel 2.5+ 3.4i — — Typel 2.85 0.121 3.56 0.170
TypeIll 2.5+ 3.41 —14.045.01 — Type II  2.85 0.121 22.5 0.165
Type III 2.5+ 3.41 = —4.0 — 2.51 Type III  25.9 0.058 31.1 0.063

Exp. 5(12) 0.059(18) 33(12) 0.116(17)



Institute of

a3 SCIENCE TOKYO

An idea of a new experiment at CERN ELENA

* Use a transition edge sensor (TES) detector
Instead of a HPGe detector
> TES was used for precision spectroscopy
of kaonic atoms and muonic atoms.

T. Hashimoto et al., Phys. Rev. Lett. 128 (2022) 112503
1. Okumura et al., Phys. Rev. Lett. 130 (2023) 173001

> expected resolution
~ several tens eV for 120 keV X rays.
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Novel concept for low-energy antineutron production and its application for
antineutron scattering experiments
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The existing data of antiproton scattering cross sections on protons and nuclei have advanced
our understanding of hadronic interactions with antinucleons. However, low-energy antineutron
scattering data are scarce, thereby limiting our understanding of the S-wave antinucleon—nucleon
and antinucleon—nucleus interactions. We present a novel production scheme for very low-energy
antineutrons that could improve this situation. This method is based on backward charge-exchange
reaction (pp — nn), reaching the minimum momentum of 9 MeV /¢, well suited to study the S-wave
antinucleon—nucleon and antinucleon—nucleus interactions. Such low-energy antineutron produc-
tion can be made possible in the CERN-AD with modifications to allow antiproton extraction at

300 MeV /c.

I. INTRODUCTION

The strong interaction between hadrons, which gov-
erns both the internal structure of hadrons through
quark confinement and the formation of atomic nuclei
and exotic hadrons as molecular states, is described by
Quantum Chromodynamics (QCD). Because of the non-
perturbative nature of the low-energy QCD, phenomeno-
logical approaches with a one-boson-exchange potential
for baryon—baryon interactions have been widely applied.
Recently, significant advancements have been made in
QCD-based approaches, including Chiral Effective Field
Theory (Chiral EFT) and Lattice QCD. Chiral EFT is
based on chiral symmetry and its spontaneous breaking
in the low-energy QCD regime. It describes baryon—
baryon interactions using as parameters low-energy con-
stants (LECs) [1], which are obtained by fits to experi-
mental data. On the other hand, lattice QCD numeri-
cally simulates QCD on a discretized space-time lattice
starting from first principles [2]. On the experimental
side, while two-body scattering has long been used to
deduce hadron—hadron interaction properties, the fem-
toscopy technique in proton—proton or heavy-ion colli-
sions has emerged as a powerful tool. By combining
experimental and theoretical methods, a better descrip-
tion of hadron—hadron interactions and their underlying
mechanisms can be pursued.

Among various hadron—hadron interactions,
antinucleon-nucleon (NA) interactions involve an-
nihilation dynamics, and have played a unique role in
deepening our understanding of the strong interaction.

* fujioka@phys.sci.isct.ac.jp
t higuchi.takashi.8k@kyoto-u.ac.jp

A. Antinucleon-nucleon interaction

The NN potential in a one-boson-exchange potential
picture is obtained by the G-parity transformation of the
NN potential, that is equivalent to change the sign of the
contribution of odd G-parity boson exchange [3, 1]. As
a result, the NN potential is more attractive on average
than the NN potential. In particular, the w-exchange
term, which is responsible for a part of the repulsive core
in the NN interaction, turns to be attractive for the N A/
interaction. However, for the short-range part, a complex
potential should be supplemented to take into account
absorptive effects in the AN annihilation. This short-
range interaction must be empirically determined using
NN scattering data. Several types of optical models,
such as Paris potential [5], Dover—Richard potential [6, 7],
and Kohno—Weise potential [3], were proposed in 1980s.
These different NN models are compared in Ref. [J].

Experimental studies of NA scattering and anni-
hilation were mostly performed during the operation
of Low Energy Antiproton Ring (LEAR) (1983-1996),
that leveraged ultra-slowly extracted antiproton beams
spanning a wide range of momenta between 105 and
2000 MeV /c [3, 4]. Cross sections of pp elastic scattering,
charge-exchange scattering (pp — nn), annihilation into
mesons, as well as polarization observables, were mea-
sured with antiproton beams in various experiments. The
PS201 (OBELIX) experiment [10-12] uniquely investi-
gated np annihilation as well, by operating a dedicated
facility for antineutron beam production.

The wealth of experimental data on various reactions
at the time played a crucial role in refining the N A inter-
action models. First, an energy-dependent partial-wave
analysis (PWA) was performed [13]. The long-range in-
teraction in the PWA was based on the one-pion and
two-pion exchange contributions derived via Chiral EFT
similarly to the nucleon-nucleon PWA, whereas the short-
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8 New Proposals

In addition to the long range plans highlighted within the existing experiments, new physics ideas such
as antiprotonic atom X-ray spectroscopy (PAX), spectroscopy of hypernuclei (HYPER), antihydrogen
molecular ion (collaboration of many groups into which members from ALPHA, GBAR, BASE, HHU,
MPIK and many others will be involved), study of properties of antideuterons (AEgIS, ASACUSA,
BASE, EXEQT and GBAR), collision experiments using continuous beams (ASACUSA), and low
energy antineutron physics, are discussed in this section. Some of these ideas are already in the
preparation phase, including successful or ongoing grant applications.

8.6 Low energy antineutrons

Antinucleon-nucleon interactions were explored at CERN-LEAR, with antineutron beams of momenta
above 50 MeV /c. Lower energy antineutrons down to 9 MeV /¢ can be produced through a charge-
exchange reaction (pp — nn) with a 300 MeV /¢ antiproton beam from the AD [67]. It is considered
as the possibility to study unresolved problems of low-energy antineutron dynamics, and unveil the
origins of a pp enhancement and X resonances near the pp threshold, as observed in the BESIII
experiment.

11
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CERN AD (Antiproton Decelerator)
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Novel concept: low-energy antineutron production
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300 MeV/c antiprotons from CERN-AD (Antiproton Decelerator)
9 MeV/c or 40 keV (in lab) antineutrons can be backward-produced in charge-

exchange reaction (pp — nn)
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Summary of existing data and prospect
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Only S-wave scattering is important in case of ik = p; ../2 < 25MeV/c
scattering amplitude: f,_, = 1/(kcot o — ik)
kcoto ~ — 1/a = a = ag — iag (o; > 0) in the low-energy limit

scattering length: a = ap — ia; (a; > 0)

dr
elastic scattering cross section: 6, = ——  ~ 47| a \2(1 — 2a;k)
as + (o + k)?
4r ay 4r

~ 2

annihilation cross section: Gann - —
k 0{1% -+ (0{1 —+ k)2 k

15
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Antineutron-proton scattering
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One-boson-exchange models
Viw=V,+ Vo, +V, +V,+V,+ - (Paris potential)
G-parity transformation
Viw=—Vo+ Vo, +V, +V =V, + -

The short-range part is replaced by an annihilation potential Vi, + W,

NN Paris potential @ NN Paris potential
Dover-Richard, Kohno-Weise, ...
Partial Wave Analysis [PRC 86 (2012) 044003]
Chiral EFT [up to N3LO, JHEP 07(2017) 078]
no Lattice QCD calculation
All these approaches rely on experimental data, that are more than three decades old.

17



Low-energy antiproton-proton scattering (annihilation)

Due to attractive Coulomb interaction

6 x % instead of 6 !

p-wave doesn’t vanish even when E—0

Coulomb-corrected scattering length a_.

can be deduced as follows:
87 Im (—as/B)

¢ (Q_ — , {
g0 m(S-wave) 1 — e2m |1 4 igw(n)as|? D
where:
- . = —1/gB is the dimensionless Coulomb param-

eter with B the pp Bohr radius;

- w(x) = c(x) — 2ixh(x) is an auxiliary function
with gBw(n) — 27 when g — 0;

- ¢4 and h are the usual functions in the Coulomb
scattering theory

29X ‘
exp(2mx) — 1’
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J. Carbonell et al., PLB 397 (1997) 345
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Carbonell et al., Phys. Lett. B 397 (1997) 345,
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Scattering lengths in various interaction models
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Previous measurements of np scattering (1)

total cross section
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Antineutron-nucleus scattering
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cf. neutron scattering length

Indirectly determined by solvinga | = . E
Schrodinger eq. : | . / N .
with the optical potential, : . cF I -
which reproduces energy levelsof -\, g
antiprOtoniC atoms i g On. | j f?ﬁ?’fﬁlgf]i:r
ry=—4x | 1 + bop(r = | l | |20 30 450 pp e 100
pt( ) ( m> ()10( ) HTE% " II 1 H¥J I { } . SISAXS CAtomic numf):l; W)b ) |
_ ; ommunity Website
Re ay = (1.54 = 0.03)A %5 11=0005 £y |
Ima, = — (1.00 + 0.04) fm |

Batty et al., Nucl. Phys. A 689 (2001) 721

Absence of low-energy scattering
measurement

22



Institute of

SCIENCE TOKYO

Neutron-antineutron oscillation

* violates both B and B-L (B: baryon number, L: lepton number)
» test of Grand Unified Theory

008 e ok HAK Es5  UCN Gyr)
* Lower limit of oscillation time N :

> ILL (1994) free neutron 2006 | i -
7, - > 8.0 X 107 s g e i i ]
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M. Baldo-Ceolin et al., Z. Phys. C 63, 409 (1994). 10° 10" 10"
K. Abe et al., Phys. Rev. D 103, 012008 (2021). o [sec]

D.G. Phillips Il et al., Phys. Rep. 612 (2015) 1
K.S. Babu et al., Phys. Rev. D 87 (2013) 115019
T. Shima, RCNP NEWS Colloquium (2023)
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Importance of antineutron-nucleus scattering length

Theoretical analysis of antineutron-nucleus data needed for antineutron A new approach to search for free neutron-antineutron oscillations
mirrors in neutron-antineutron oscillation experiments using coherent neutron prop agation n gas
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The arguments of this paper apply also to the low energy s-
wave scattering of neutrons and antineutrons, and we can apply
neutron optics theory to the propagation of antineutrons in gases
as well. The value of the neutron index of refraction can be written

The values of the antineutron-nucleus scattering lengths, and, in particular, their imaginary parts, are
needed to evaluate the feasibility of using neutron mirrors in laboratory experiments to search for neutron-
antineutron oscillations. We analyze existing experimental and theoretical constraints on these values with
emphasis on low-A nuclei and use the results to suggest materials for the neutron-antineutron guide and to
evaluate the systematic uncertainties in estimating the neutron-antineutron oscillation time. As an example,
we discuss a scenario for a future neutron-antineutron oscillation experiment proposed for the European
Spallation Source. We also suggest future experiments which can provide a better determination of the
values of antineutron-nuclei scattering lengths.

mirror reflection Phys. Rev. D 102 (2020) O750y gas propagation Phys. Lett. B 808 (2020) 135636j
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discrepancy between exp. cross sections
and calculations using the optical potential
which reproduce p-atomic levels.

Batty: a, = (1.54 £ 0.03)A% 112099 _ (1,00 + 0.04) fm

annihilation cross section

16000 [ _
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: b —— ‘ 12000 | \\\
——+ /’/—+— C 10000 | \\
p————" | Al I i
—+— Cu © I \
x A 0000 F '\ oxp
_+_ Ag \\E Y
—4+— Sn 40002— exp.b% \\\\I\ s -
i 2000 | calc. n \\\I _-
----- Batty
101-J . . | | "0 100 200 300 400
0 100 200 300 400 500 Piab (MeV/c)
PLab | MeV /(]
NPA 697 (2002) 209 Friedman et al., NPA 925 (2014) 141
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Antiproton-nucleus optical potentials (w/o the b1 term) were investigated with
X-ray spectroscopy of antiprotonic atoms.

We will perform X-ray spectroscopy for antiprotonic atoms in Ca isotopes (4°Ca,
48Ca) with TES detectors to deduce bo and b1 parameters.

Antineutron-nucleus (proton) scattering lengths will be determined by
antineutron-nucleus (proton) scattering measurements at low energies.

For this purpose, a low-energy antineutron beamline at CERN-AD is proposed.
Antineutron-nucleus scattering lengths are very important in search of neutron-
antineutron oscillation.
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