Contribution ID: 46 Type: not specified

Experimental search for η '-mesic nuclei by missing-mass spectroscopy in 12C(p,dp) reaction with the WASA detector at GSI-FRS (invited talk)

Thursday, April 3, 2025 4:50 PM (30 minutes)

The η' meson has an extraordinary large mass among the light pseudo-scalar meson nonet.

The large mass is considered to originate from the non-trivial vacuum structure associated with chiral symmetry breaking and the axial U(1) anomaly in the QCD.

In a nuclear medium, where the chiral symmetry is partially restored, the mass reduction of the η' meson is predicted by 37–150~MeV/ c^2 depending on theoretical models.

Since such a mass reduction leads to an attractive potential of η' meson to the nucleus, bound state of η' mesons and nuclei (= η' -mesic nuclei) is expected to exist.

We performed an experimental search for η' -mesic nuclei by missing-mass spectroscopy in $^{12}\mathrm{C}(p,dp)$ reaction using the WASA detector at the FRS in 2022 February, which was a coincidence measurement of forward deuterons and protons from decay of η' -mesic nuclei ($\eta'NN \to NN$).

We employed 2.5~GeV proton beams with an intensity of $\sim 3 \times 10^8/s$ and placed a $^{12}\mathrm{C}$ target at FRS-F2 focal plane.

The decay products of η' -mesic nuclei were measured with the WASA detector installed at the FRS-F2 focal plane and the forward deuteron momenta were analyzed by the FRS.

In this presentation, we will present details of the experiment and the current status of the analysis.

Presenter: SEKIYA, Ryohei (Kyoto University, RIKEN)

Session Classification: Plenary Session