Decays of Exotic Double-Heavy Hadrons into Pairs of Heavy Hadrons

Roberto Bruschini

The Ohio State University

YITP international workshop on Hadron in Nucleus Kyoto, April 4, 2025

Roberto Bruschini (OSU)

Decays of Exotic Double-Heavy Hadrons

THE OHIO STATE UNIVERSITY

Hadron in Nucleus 2025 1 / 19

Outline

2) Decays of $Qar{Q}$ Hadrons

3 Decays of QQ Hadrons

The Dilemma of Exotic Double-Heavy Hadrons

- For a long time, it was believed that every hadron is either:
 - a quark-antiquark meson;
 - a 3-quark baryon.
- Dozens of exotic hadrons with additional constituents have been discovered in the last 20 years.
- Many of them contain heavy quarks (Q) or antiquarks (\bar{Q}):
 - dozens of exotic $Q\bar{Q}$ hadrons
 - one exotic QQ hadron
- In addition to being interesting in themselves, they have surprising properties in a dense hadronic medium (cf. Laura's talk on Wednesday).

Born-Oppenheimer Approximation for QCD

Two-step procedure:

- calculate potentials in lattice QCD
- solve a Schrödinger equation

- LO: $m_Q \to \infty$ (static quarks)
- NLO: \$\mathcal{O}(1/m_Q)\$ (kinetic energy, spin splittings,...)

Coupled Channels

Adiabatic Born-Oppenheimer Approximation

•
$$-\frac{1}{m} \left(\vec{\nabla} + \vec{\Pi}(\vec{r}) \right)^2 \Psi(\vec{r}) + \mathbf{V}_{\mathsf{diag}}(r) \Psi(\vec{r}) = E \Psi(\vec{r})$$

channels coupled by nonadiabatic couplings

Diabatic Born-Oppenheimer Approximation

•
$$-\frac{1}{m}\nabla^2 \Psi(\vec{r}) + \mathbf{V}(\vec{r})\Psi(\vec{r}) = E\Psi(\vec{r})$$

channels coupled by mixing potentials

Diabatic Schrödinger Equation

RB [2303.17533]

$$-\frac{1}{m_Q}\nabla^2 \Psi(\vec{r}) + \mathbf{V}(\vec{r}) \Psi(\vec{r}) = E \Psi(\vec{r})$$

$\mathbf{V}(\vec{r})$: multichannel potential matrix

- ullet diagonal elements ightarrow potentials ightarrow spectrum
- off-diagonal elements ightarrow transitions ightarrow mixing effects and decays
- completely determined by:
 - lattice QCD with static color sources
 - angular momentum algebra

Outline

Introduction

2 Decays of $Q\bar{Q}$ Hadrons

3 Decays of QQ Hadrons

Confining $Q\bar{Q}$ Potentials

Juge, Kuti & Morningstar [hep-lat/0207004] Capitani, Philipsen, Reisinger, Riehl & Wagner [1811.11046]; Schlosser & Wagner [2111.00741] Bicudo, Cardoso & Sharifian [2105.12159]; Sharifian, Cardoso & Bicudo [2303.15152]

 $\Pi_u, \Sigma_u^-: \text{ quarkonium hybrid}$ • $r \to 0: 1^{+-}$ gluelump • $r \to \infty: N = 1, 3 \text{ string}$

Hadron-Pair $Q\bar{Q}$ Potentials

E. Braaten & RB [2409.08002]

Decreases monotonically

 scattering states (hadron pairs)

Crosses the threshold

- deeply bound states (compact multiquarks)
- shallow bound states (hadron molecules)
- scattering states (hadron pairs, resonances)

Transition Potentials

G. Bali, H. Neff, T. Düssel, T. Lippert & K. Schilling [hep-lat/0505012] J. Bulava, F. Knechtli, V. Koch, C. Morningstar & M. Peardon [2403.00754]

 $Q\bar{Q} \leftrightarrow B\bar{B}$ potential mixing

Transition effects • bound \leftrightarrow bound. configuration mixing ● bound ↔ scattering: mixing (below threshold) decays (above threshold) • scattering \leftrightarrow scattering: mixing/decays (resonances) inelasticity (hadron pairs)

Decays from Transition Potentials

E. Braaten & RB [2403.12868]

Decay widths are calculated by solving a coupled-channel Schrödinger equation:

 $g_{\lambda,\eta}$ transition potentials from lattice QCD

 $V_{L,\eta}$ transition potentials inside the Schrödinger equation

$$V_{L,\eta}(j, L_{Q\bar{Q}} \to j', L'_{Q\bar{Q}}) = (-1)^{j-j'} \sum_{\lambda} \left\langle \begin{matrix} j & L \\ \lambda & -\lambda \end{matrix} \middle| \begin{matrix} L_{Q\bar{Q}} \\ 0 \end{matrix} \right\rangle \left\langle \begin{matrix} j' & L \\ \lambda & -\lambda \end{matrix} \middle| \begin{matrix} L'_{Q\bar{Q}} \\ 0 \end{matrix} \right\rangle g_{\lambda,\eta}(j \to j')$$

Model-independent selection rules

- conservation of Q and \bar{Q} spins
- ullet conservation of Born-Oppenheimer quantum numbers λ and η

• conservation of the angular-momentum vector $ec{L}=ec{J}_{\mathsf{light}}+ec{L}_{Qar{Q}}$

Hadron Pairs and Heavy-Quark Spin Symmetry

E. Braaten & RB [2403.12868]

- Natural angular momenta for a hadron pair:
 - orbital angular momentum: $\vec{L}_{Q\bar{Q}}$
 - hadron spins: $\vec{J_1} = \vec{S}_Q + \vec{j}_1$, $\vec{J_2} = \vec{S}_{\bar{Q}} + \vec{j}_2$
- Most convenient angular momenta in B-O:

•
$$\vec{L} = \vec{j}_1 + \vec{j}_2 + \vec{L}_{Q\bar{Q}}$$

$$\bullet \ \vec{S}_{Q\bar{Q}} = \vec{S}_Q + \vec{S}_{\bar{Q}}$$

- Conversion from hadron pair to B-O angular momenta:
 - Sum hadron spins: $\vec{S} = \vec{J_1} + \vec{J_2}$.
 - 2 Add orbital angular momentum: $\vec{J} = \vec{S} + \vec{L}_{Q\bar{Q}}$.

 - Express \vec{J} as $\vec{S}_{Q\bar{Q}} + \vec{L} \implies$ Wigner 6-j symbol.
- Some relative partial decay rates are model-independent rational numbers!

Quarkonium $(Q\bar{Q})$ vs. Quarkonium-Hybrid $(Q\bar{Q}g)$ Decays RB [2306.17120]; E. Braaten & RB [2403.12868]

- $J^{PC} = 1^{--}$ Quarkonia into $B\bar{B}$, $B^*\bar{B}$, $B\bar{B}^*$, $B^*\bar{B}^*$
 - allowed
 - $B\bar{B}: B^*\bar{B}: B\bar{B}^*: B^*\bar{B}^* = 1:2:2:7$
 - in agreement with the prediction from constituent models

$J^{PC} = 1^{--}$ Quarkonium hybrids into $B\bar{B}$, $B^*\bar{B}$, $B\bar{B}^*$, $B^*\bar{B}^*$

- forbidden for bound states in the Π_u potential
- allowed for bound states in the Σ_u^- potential and in coupled Π_u/Σ_u^- potentials
- $B\bar{B}: B^*\bar{B}: B\bar{B}^*: B^*\bar{B}^* = 1:0:0:3$
- in disagreement with the prediction from constituent models (0: 0: 0: 0)

Decays of $Q\bar{Q}q\bar{q}$ Tetraquarks

E. Braaten & RB [2409.08002]

- $Q\bar{Q}q\bar{q}$ tetraquarks can decay into lower-energy heavy-meson pairs.
- The spin splittings between heavy mesons have to be taken into account.
- The spins of the Q and \bar{Q} are approximately conserved in the decay.

The remarkable decays of $Z_b(10650)$ (cf. Voloshin [1601.02540])

- The mass of $Z_b(10650)$ is near the $B^*\bar{B}^*$ threshold.
- The decays of $Z_b(10650)$ into $B^*\bar{B}$ and $B\bar{B}^*$ are not observed even though they are kinematically favored.
- This suppression can be explained by $Z_b(10650)$ being an equal-amplitude superposition of heavy-quark spin 0 and 1.

Outline

Introduction

2 Decays of $Qar{Q}$ Hadrons

3 Decays of QQ Hadrons

Confining QQ Potentials

J. Najjar & G. Bali [0910.2824]

Hadron-Pair QQ Potentials

P. Bicudo, K. Cichy, A. Peters, & M. Wagner [1510.03441]

Decays of $Q Q \ {\rm Hadrons}$

RB [2408.05150]

Born-Oppenheimer exclusion principle

- The parity P, Born-Oppenheimer quantum number η , and total heavy-quark spin S_{QQ} of a QQ hadron must satisfy the constraint $P = \eta(-1)^{S_{QQ}}$.
- Consistent with exclusion principles from identical heavy quarks in quark models.

Transition potentials

The equations for QQ transition potentials look the same as in the $Q\bar{Q}$ case. Decay widths are calculated from a Schrödinger equation. There are model-independent:

- selection rules
- relative partial decay rates

Summary

- The Born-Oppenheimer approximation gives model-independent results for:
 - selection rules for decays of double-heavy hadrons into heavy-hadron pairs;
 - relative partial decay rates of double-heavy hadrons into heavy-hadron pairs.
- These results agree with constituent models for quarkonium (in simple cases).
- These results contradict the conventional wisdom of the last 40 years that quarkonium hybrids cannot decay into the lowest pairs of heavy mesons.
- The decay widths can be calculated by solving a Schrödinger equation with:
 - transition potentials
 - spin splittings of heavy hadrons