TALK

ENTROPIC PULLING AND DIFFUSION DIODE EFFECTS IN SYSTEMS WITH COORDINATE-DEPENDENT DAMPING MAYANK SHARMA IISER PUNE

Supervisor : Arijit Bhattacharyay

Hydrodynamics of low-dimensional interacting systems : Advances, challenges, and future directions June 2-13, YITP, Kyoto university, Japan

Outline

1. Langevin dynamics

- a. Recap and related works
- b. Basics of Itô process
- 2. Recent work
 - a. Diffusion diode
 - b. Entropic pulling of a chain

System

 $\eta(t)$: Gaussian white noise

 $\langle \eta(t) \rangle = 0$

$$\langle \eta(t)\eta(t')\rangle = \delta(t-t')$$

 W_t : Wiener process

$$K_t = \frac{1}{2}mv_t^2$$

Itô process

Using Itô lemma

$$dK_t = \left[-2\frac{\Gamma}{m}K_t + \frac{\sigma^2}{2m}\right]dt + \sigma\sqrt{\frac{2K_t}{m}}dW_t$$

Initial condition :
$$K_0 = \frac{1}{2}mv_0^2$$

Using Itô lemma

$$dK_t = \left[-2\frac{\Gamma}{m}K_t + \frac{\sigma^2}{2m}\right]dt + \sigma\sqrt{\frac{2K_t}{m}}dW_t \quad , \quad K_0 = 0$$

7

Using Itô lemma

$$dK_t = \left[-2\frac{\Gamma}{m}K_t + \frac{\sigma^2}{2m}\right]dt + \sigma\sqrt{\frac{2K_t}{m}}dW_t \quad , \quad K_0 = 0$$

$$dK_t = \frac{\sigma^2}{2m}dt$$

Particle is pushed towards positive kinetic energy: Effect of thermal fluctuations

Absorbing state: the particle continuous to stay at rest.

Absorbing state: the particle continuous to stay at rest. No effect of thermal fluctuation.

Absorbing state: the particle continuous to stay at rest. No effect of thermal fluctuation. Unphysical !!

Chain rule corresponding to Anti- Itô Interpretation

$$dK_t = -2\frac{\Gamma}{m}K_t dt - \frac{\sigma^2}{2m}dt + \sigma\sqrt{\frac{2K_t}{m}} \bullet dW_t , \quad K_0 = 0$$

$$dK_t = -\frac{\sigma^2}{2m}dt$$

Push the particle to negative kinetic energy

$$dK_t = -2\frac{\Gamma}{m}K_t dt - \frac{\sigma^2}{2m}dt + \sigma\sqrt{\frac{2K_t}{m}} \bullet dW_t , \quad K_0 = 0$$

$$dK_t = -\frac{\sigma^2}{2m}dt$$

Push the particle to negative kinetic energy

Unphysical !!

Summary

Interpretation SDE	Behavior if $K_0 = 0$	Physical Plausibility	Solution Type
Itô $dK_t = [-2\frac{\Gamma}{m}K_t + \frac{\sigma^2}{2m}]dt + \sigma\sqrt{\frac{2K_t}{m}}dW_t$	Positive kinetic energy	Realistic: thermal fluctuations induce motion	Unique strong global solution
Stratonovich $dK_t = -2rac{\Gamma}{m}K_t dt + \sigma \sqrt{rac{2K_t}{m}} \circ dW_t$	Absorbing state	Unphysical: particle stuck at rest	Infinitely many spurious solutions
Anti-Itô $dK_t = -2\frac{\Gamma}{m}K_t dt - \frac{\sigma^2}{2m}dt + \sigma \sqrt{\frac{2K_t}{m}} \bullet dW_t$	Negative kinetic energy	Unphysical: negative/complex energy possible	No meaningful solution
			14

The authors further discuss :

- Kinetic energy for Relativistic Brownian particle under three interpretations.
- Kinetic energy for two particle system in a heat bath under three interpretations

The authors further discuss :

- Kinetic energy for Relativistic Brownian particle under three interpretations.
- Kinetic energy for two particle system in a heat bath under three interpretations

• The authors show that Anti-Itô and Stratonovich description does not give physical solution.

Γ

Phys. Scr. 98 (2023) 055214

Physica Scripta

PAPER

Fluctuation-dissipation relation, Maxwell-Boltzmann statistics, equipartition theorem, and stochastic calculus

REVISED 20 March 2023

31 March 2023

PUBLISHED 14 April 2023

23 November 2022

RECEIVED

ACCEPTED FOR PUBLICATION Carlos Escudero

Departamento de Matemáticas Fundamentales, Universidad Nacional de Educación a Distancia, Calle de Juan del Rosal 10, E-28040 Madrid, Spain

E-mail: cescudero@mat.uned.es

Keywords: Forward stochastic differential equations, backward stochastic differential equations, Malliavin calculus, uniqueness of solution, multiplicity of solutions, Itô vs Stratonovich dilemma

IOP	Publ	ish	ing	
-----	------	-----	-----	--

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 58 (2025) 213001 (38pp)

https://doi.org/10.1088/1751-8121/add8cf

Topical Review

Brownian motion near a wall: the dilemma of Itô or Stratonovich

A Bhattacharyay

Indian Institute of Science Education and Research, Pune, India

E-mail: a.bhattacharyay@iiserpune.ac.in

Received 19 January 2025; revised 11 May 2025 Accepted for publication 14 May 2025 Published 27 May 2025

Langevin equation:

In presence of potential U(x)

$$m\dot{v}_{t} = -\Gamma v_{t} - \frac{\partial U(x)}{\partial x} + \sigma \eta(t), \quad \sigma = \sqrt{2\Gamma k_{B}T}$$

$$\int \mathbf{Overdamped limit}_{m\dot{v}_{t}} \approx 0$$

$$\frac{dx}{dt} = -\frac{1}{\Gamma} \frac{\partial U(x)}{\partial x} + \sqrt{\frac{2k_{B}T}{\Gamma}} \eta(t)$$

• Experiments have shown that the diffusivity of a BP decreases (or damping increases) as it comes near to a wall/interface.

• Diffusivity (and damping) can becomes coordinate/ state dependent.

$$\frac{dx}{dt} = -\frac{1}{\Gamma(x)}\frac{\partial U}{\partial x} + \sqrt{2D(x)}\eta(t)$$

ITÔ PROCESS

$$\frac{dx}{dt} = -\frac{1}{\Gamma(x)}\frac{\partial U}{\partial x} + \sqrt{2D(x)}\eta(t)$$

Local Stokes-Einstein relation
$$D(x) = \frac{k_B T}{\Gamma(x)}$$

$$\frac{dx}{dt} = -\frac{1}{\Gamma(x)} \frac{\partial U}{\partial x} + \sqrt{2D(x)} \eta(t)$$

Fokker Planck
$$\frac{\partial}{\partial t} \rho(x,t) = -\frac{\partial}{\partial x} \left[-\frac{1}{\Gamma(x)} \frac{\partial U(x)}{\partial x} \rho(x,t) - \frac{\partial}{\partial x} (D(x)\rho(x,t)) \right]$$

$$\frac{dx}{dt} = -\frac{1}{\Gamma(x)} \frac{\partial U}{\partial x} + \sqrt{2D(x)}\eta(t)$$

Fokker Planck
$$\underbrace{\frac{\partial}{\partial t}\rho(x,t) = -\frac{\partial}{\partial x} [-\frac{1}{\Gamma(x)} \frac{\partial U(x)}{\partial x}\rho(x,t) - \frac{\partial}{\partial x}(D(x)\rho(x,t))]}_{\text{Drift current}}$$

$$\left(\begin{array}{c} \text{Local Stokes-Einstein relation} \\ D(x) = \frac{k_B T}{\Gamma(x)} \end{array} \right)$$

$$\frac{dx}{dt} = -\frac{1}{\Gamma(x)} \frac{\partial U}{\partial x} + \sqrt{2D(x)} \eta(t)$$
Fokker Planck
$$\frac{\partial}{\partial t} \rho(x,t) = -\frac{\partial}{\partial x} \left[-\frac{1}{\Gamma(x)} \frac{\partial U(x)}{\partial x} \rho(x,t) - \frac{\partial}{\partial x} (D(x)\rho(x,t)) \right]$$
Drift current
$$J(x,t)$$

Local Stokes-Einstein relation $D(x) = \frac{k_B T}{\Gamma(x)}$

Local Stokes-Einstein relation
$$D(x) = \frac{k_B T}{\Gamma(x)}$$

$$\frac{dx}{dt} = -\frac{1}{\Gamma(x)} \frac{\partial U}{\partial x} + \sqrt{2D(x)} \eta(t)$$

$$D(x) = \frac{hB^{2}}{\Gamma(x)}$$
Fokker Planck
$$\frac{\partial}{\partial t} \rho(x,t) = -\frac{\partial}{\partial x} \left[-\frac{1}{\Gamma(x)} \frac{\partial U(x)}{\partial x} \rho(x,t) - \frac{\partial}{\partial x} (D(x)\rho(x,t)) \right]$$
Equilibrium
$$J(x,t) = 0$$
Itô distribution

Itô distribution:
$$\rho(x) = C \frac{D_0}{D(x)} \exp(-\frac{U(x)}{k_B T})$$

$$D_0$$
: Bulk Diffusivity

$$D(x)$$
: State-dependent Diffusivity

Itô distribution:
$$\rho(x) = C \frac{D_0}{D(x)} \exp(-\frac{U(x)}{k_B T})$$

Dimensionless density of states:
$$\Omega(x) = \frac{D_0}{D(x)}$$

:

Itô distribution:
$$\rho(x) = C \frac{D_0}{D(x)} \exp(-\frac{U(x)}{k_B T})$$

Dimensionless density of states:
$$\Omega(x) = \frac{D_0}{D(x)}$$

Excess entropy

$$S(D(x)) = k_B \log \Omega(x) = k_B \log \frac{D_0}{D(x)}$$

Physical meaning ??

Constant damping coefficient

$$m\dot{v}_t = -\Gamma v_t + \sigma \eta(t), \quad \sigma = \sqrt{2\Gamma k_B T}$$

Constant damping coefficient

$$m\dot{v}_t = -\Gamma v_t + \sigma \eta(t), \quad \sigma = \sqrt{2\Gamma k_B T}$$

The velocity spread of BP after it has equilibrated : $\Delta v = \sqrt{\frac{k_B T}{m}}$

Constant damping coefficient

$$m\dot{v}_t = -\Gamma v_t + \sigma \eta(t), \quad \sigma = \sqrt{2\Gamma k_B T}$$

The velocity spread of BP after it has equilibrated : $\Delta v = \sqrt{\frac{k_B T}{m}}$

The minimum average time BP takes to equilibrate : $\tau = \frac{m}{\Gamma}$

Constant damping coefficient

$$m\dot{v}_t = -\Gamma v_t + \sigma \eta(t), \quad \sigma = \sqrt{2\Gamma k_B T}$$

The velocity spread of BP after it has equilibrated : $\Delta v = \sqrt{\frac{k_B T}{m}}$

The minimum average time BP takes to equilibrate : $\tau = \frac{m}{\Gamma}$

Corresponding uncertainty in position :
$$\Delta x = \Delta v \times \tau = \frac{\sqrt{mk_BT}}{\Gamma}$$

$$\Delta x \times \Delta v = \frac{k_B T}{\Gamma} = D_0$$

$$\Delta x \times \Delta v = \frac{k_B T}{\Gamma} = D_0$$

Classical analog to Planck's constant which sets lower bound to phase space volume

For a BP near interface, minimum phase space volume or cell size becomes : D(x)

 $D_0 \ge D(x)$

For a BP near interface, minimum phase space volume or cell size becomes : D(x)

 $D_0 \ge D(x)$

Phase space perspective of the entropy term

Itô distribution:

$$\rho(x) = C \frac{D_0}{D(x)} \exp\left(-\frac{U(x)}{k_B T}\right)$$
$$= C \exp\left(-\frac{1}{k_B T} \left[U(x) - TS(D(x))\right]\right)$$
$$= C \exp\left(-\frac{\mathcal{F}(x)}{k_B T}\right)$$

$$\mathcal{F}(x) = U(x) - TS(D(x))$$

$$F_{ent}(x) = -\frac{d\mathcal{F}(x)}{dx} = T\frac{dS(D(x))}{dx} = -k_B T\frac{d}{dx} log D(x)$$

→ Motion in direction of decreasing diffusivity.

Recent work

Letter

Entropic pulling and diffusion diode in an Itô process

Mayank Sharma^{®,*}, A. Bhattacharyay

Indian Institute of Science Education and Research, Pune, India

- Consider N Brownian particles confined inside a box in contact with a heat bath at temperature T.
- Box is divided into three cuboidal regions: R_1 , R_2 and R_3 .
- Regions R_1 and R_3 are geometrically identical

- Isotropic Coordinate dependent damping exists .
- Excluded volume interaction between particles
- Confining potential at boundaries.

Case I

• Brownian particles are placed randomly in R_1 at start of simulation and allowed to evolve

• Most of the particles reach R_3

• Most of the particles reach R_3

Mean occupation number of particles in R_3 for various widths of R_2

Case II

• Brownian particles are placed randomly in R_3 at start of simulation and allowed to evolve.

• Most of the particles are unable to cross via R_2 .

Case II

Mean occupation number of particles in ${\cal R}_3$ for various widths of ${\cal R}_2$

Conclusion

- Cooperation in particles motion towards regions of higher damping in presence of damping gradient.
- Opposition in particles motion towards regions of higher damping in presence of damping gradient.
- Entropic pulling in such systems can generate diffusion diode effect.

- Consider a Brownian chain confined inside a funnel like geometry in contact with a heat bath at temperature *T*.
- $R_1 \& R_3$: hollow right circular cylinder of radius $\mathcal{R} \& \mathcal{R}$ respectively.
- R_2 : frustum of cone with radii \mathcal{R} & r , where $\mathcal{R} > r$.
- h : height of each region.

 $\Gamma_i = \frac{A}{\mathcal{S}_i}$

$\mathcal{S}_i:$ Cross-section radius

- Coordinate dependent damping experienced by a monomer in a region is inversely proportional to radius of circular cross-section in which it is present.
- Initial state of polymer : Linear unfolded configuration with chain lying on z axis in region R_1 .

• Gaussian distributed random variable with zero mean, unit strength, no cross correlation.

Case II $\Gamma_i = constant$

- Constant damping
- Initial state of polymer : Linear unfolded configuration with chain lying on z axis in region R_1 .

• Random numbers used are same as in case I.

Average motion of centre of mass in z direction

- Now, we remove regions $R_1 \& R_3$.
- Only have region R_2 . Compare transport for various damping strengths.

A : Damping gradient strength

Variation of average position of centre of mass in \mathcal{Z} direction for various damping gradient.

Variation of average velocity of centre of mass in \mathcal{Z} direction for various diffusivity gradient.

Conclusion

- The Itô process facilitates the transport of mesoscopic object from a wider region to narrower one.
- This also means that the mesoscopic entity can remain trapped after reaching region of high damping.

nature communications

Article

https://doi.org/10.1038/s41467-024-52674-y

6

Single-molecule evidence of Entropic Pulling by Hsp70 chaperones

Received: 15 March 2024	Verena Rukes @ ^{1,2} , Mathieu E. Rebeaud @ ³ , Louis W. Perrin ¹ , Paolo De Los Rios © ^{3,4} ⊠ & Chan Cao © ¹ ⊠	
Accepted: 17 September 2024		
Published online: 08 October 2024	Use 70 shares are central components of the collular natural, that	
Check for updates	Hsp/0 chaperones are central components of the cellular network that ensures the structural quality of proteins. Despite crucial roles in processes such as protein disaggregation and protein translocation into organelles, their physical mechanism of action has remained hotly debated. To the best of our knowledge, no experimental data has directly proven any of the mod- els proposed to date (Power Stroke, Brownian Ratchet, or Entropic Pulling) due to a lack of suitable methods. Here, we use nanopores, a powerful single- molecule tool, to investigate the mechanism of Hsp70s. We demonstrate that Hsp70s extract trapped polypeptide substrates from the nanopore by gen- erating strong forces (equivalent to 46 pN over distances of 1 nm), that rely on the size of Hsp70. The findings provide unambiguous evidence of the Entropic Pulling mechanism, thus solving a long-standing debate, and proposing a potentially universal principle governing diverse cellular processes. Addi- tionally, these results highlight the utility of biological nanopores for protein studies.	

Thank you!!

Questions??