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Recap of Langevin dynamics

Langevin equation:

Constant damping coefficient

\

mvy = —Tvy + on(t), o=+/2LkpT

System

[ n (t) : Gaussian white noise}

(n(t)) =0

(n(®)n(t")) = ot —t)



Recap of Langevin dynamics

Langevin equation:

Constant damping coefficient

\

mdv; = —T'vdt + odW;, o =+/2'kgT

AW, = n(t)dt System

[ W; : Wiener process }




Recap of Langevin dynamics

Langevin equation:

mdv; = —T'vdt + odW;, o =+/2'kgT

System

[ K; :Kineticenergy }

K = —muv;



Reference : 1t6 versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

[ It process }

Using It6 lemma

r 2 2K
dK, = [-2— K| + —]dt + oy —LdW,
m 2m m

1
Initial condition: Ky = —mv(z)



Reference : 1t6 versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

[ It process

Using It6 lemma

) 2 2K
dK; = [-2— K, + ;—]dt toy/ =AW, . Ko =0

m m



Reference : 1t6 versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

Using It6 lemma n
It process

r 2 2K
th = [—Q—Kt + O-—]dt + o —tth ’ KO — O
m 2m m

2

dK, = 2t
2m

Particle is pushed towards positive kinetic energy : Effect of thermal fluctuations



Reference : 1t6 versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

Using “normal” calculus X
g Stratonovich calculus

r 2K _
dK; = —2—K,dt + ¢ Lo dW, , Ko=0
m m

th:O

Absorbing state: the particle continuous to stay at rest.



Reference : 1t6 versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

Using “normal” calculus X
g Stratonovich calculus

r 2K _
dK; = —2—K,dt + ¢ Lo dW, , Ko=0
m m

th:O

Absorbing state: the particle continuous to stay at rest. No effect of thermal fluctuation.
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Reference : 1t6 versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

Using “normal” calculus X
g Stratonovich calculus

r 2K _
dK; = —2—K,dt + ¢ Lo dW, , Ko=0
m m

th:O

Absorbing state: the particle continuous to stay at rest. No effect of thermal fluctuation.
Unphysical !!
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Reference : 1t6 versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

Chain rule corresponding to Anti- I1t6 Interpretation [ Anti-Ité calculus

I 2 2K
dK; = —2—K,dt — 2—dt + & t
m 2m

2

dK, = — 2 di
2m

Push the particle to negative kinetic energy
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Reference : 1t6 versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

F 2
dK; = —2—K,dt — 2—dt + &
m 2m

2

dK, = — 2 di
2m

Push the particle to negative kinetic energy

Unphysical !!

|

Anti-Ito calculus
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Summary

Interpretation SDE

Behavior if

Ky=0

Physical Plausibility

Solution Type

Ité

I 2 2K
m 2m m

Positive kinetic
energy

Realistic: thermal
fluctuations induce
motion

Unique strdng
global solution

Stratonovich Absorbing Unphysical: particle Infinitely many
state stuck at rest spurious
th = —2£tht +o Kt e} th SOIUtlonS
m m
Anti-Ito Negative Unphysical: No meaningful

K
m

F 2
dK, = —2—Kdt — Z—dt + ¢
m 2m

L] th

kinetic energy

negative/complex
energy possible

solution
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Reference : 1td versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

The authors further discuss :

e Kineticenergy for Relativistic Brownian particle under three interpretations.
e Kinetic energy for two particle system in a heat bath under three interpretations
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Reference : 1td versus Hanggi—Klimontovich : Carlos Escudero and Helder Rojas

The authors further discuss : r

e Kineticenergy for Relativistic Brownian particle under three interpretations.
e Kinetic energy for two particle system in a heat bath under three interpretations

e Theauthors show that Anti-1tdé and Stratonovich description does not give physical
solution.
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Recap of Langevin dynamics

Langevin equation:
In presence of potential U(gj)

mvy = —T'vy — 8%5;6) +on(t), o=+/2TkgT

Overdamped limit

’ITL’UtWO

dv  10U(x) 2kpT
% T o TV W

19



Experiments have shown that the diffusivity of a BP decreases ( or damping increases)
as it comes near to a wall/interface.

Diffusivity (and damping) can becomes coordinate/ state dependent.

20



Overdamped Langevin equation:

dz 1 oU
@~ T or + /2D (a)n(t)

Local Stokes-Einstein relation

_ kgT

D(x) T()
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Overdamped Langevin equation:

dx 1 oU
@&~ T or + /2D (a)n(t)

ITO PROCESS

Local Stokes-Einstein relation

_ kgT

D(x) T()
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Overdamped Langevin equation:

Local Stokes-Einstein relation

_ kgT

D(x) T()

dz 1 oU
@~ T or + /2D (a)n(t)

Fokker Planck




Overdamped Langevin equation:

0

ot

dx

- =

(:th) -

1 oU
_ 2D t
e H V2D
Fokker Planck
Diffusion current
0 1 0U(x) 0

_%[_mx)

ox

p(x,t) — %(D(fﬂ)p(fv, t)]

'

Local Stokes-Einstein relation

_ kgT

D(x) T()
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Overdamped Langevin equation:

dx 1 oU
@~ T or +/2D()n(t)

Fokker Planck

Diffusion current

A

'

N J
J(2,1)

Local Stokes-Einstein relation

_ kgT

D(x) T(2)
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Overdamped Langevin equation:

Local Stokes-Einstein relation

d 1 oU D(z) = 22
de 1 U poes U )
dt  T'(x) 0z +v2D(@n(?) o
Fokker Planck
Diffusion current
5 5 L oUe) . 5 ~ Equilibrium 5 Ux)
x 0 X
57T 1) = 5oy g P D) — gy (D@, 0)] | D #0) = Oy Pl p)
5 J(x,t) =0
It6 distribution
\_ J
Y
J(z,t)
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It6 distribution:

p(x) =

Doi

D(x) :

Bulk Diffusivity

State-dependent Diffusivity
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Ito6 distribution: p(z) = CeXp(—

Dimensionless B
density of states: Q( )_

U(x)
kT

)
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e B Ul(zx)
Ito distribution: p(x) = CeXp(— kBT)

Di ionl DO
Imensioniess Q( ) —

density of states: D(;U)
Excess entropy
S(D(@)) = ki log Xa) = kp log =
x f— O €Tr) = O
B log B 108 D(z)
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Physical meaning ??
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Langevin equation:

Constant damping coefficient

\

mvy = —Tvy + on(t), o=+/2LkpT
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Langevin equation: @ @==Z0- - - - - — — — — — — — — — — —_

Constant damping coefficient -\ J- - — -

mvy = —Tvy + on(t), o=+/2LkpT

. . . kT
The velocity spread of BP after it has equilibrated: Av = e
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Langevin equation: @ @==Z0- - - - - — — — — — — — — — — —_

Constant damping coefficient -\ J- - — -

\

mvy = —Tvy + on(t), o=+/2LkpT

. . . kT
The velocity spread of BP after it has equilibrated: Av = e

=3

The minimum average time BP takes to equilibrate: 7 =
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Langevin equation: @ @==Z0- - - - - — — — — — — — — — — —_

Constant damping coefficient -\ J- - — -

\

mvy = —Tvy + on(t), o=+/2LkpT

. . . kT
The velocity spread of BP after it has equilibrated: Av = e

=3

The minimum average time BP takes to equilibrate: 7 =

vV mszT

Corresponding uncertainty in position: Ax = Av X 7 = -
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T
Al‘XA’U:k%:DO

Minimum Phase space cell volume or cell size available to BP in Bulk: Dy
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T
Az x Av = kl; = Dy

Minimum Phase space cell volume or cell size available to BP in Bulk: Dy

Classical analog to Planck’s constant which sets lower bound to phase space volume
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Minimum Phase space cell volume or cell size available to BP in Bulk: Dy
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Minimum Phase space cell volume or cell size available to BP in Bulk: Dy
For a BP near interface, minimum phase space volume or cell size becomes : D(a:)
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Minimum Phase space cell volume or cell size available to BP in Bulk: Dy
For a BP near interface, minimum phase space volume or cell size becomes : D(:U)

/D(:E)
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Phase space perspective of the entropy term
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Ito distribution:

41



dF(x)
=T
dx dx

dS(D(x)) _ _kBT%logD(l')

Fent(x) - -

-> Motionindirection of decreasing diffusivity.
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Recent work
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Consider N Brownian particles confined inside a box in contact with a heat
bath at temperature 1'.

Box is divided into three cuboidal regions: R;, R,and Rs.

Regions R, and Rsare geometrically identical
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Isotropic Coordinate dependent damping exists .
Excluded volume interaction between particles

Confining potential at boundaries.

45



Casell

Brownian particles are placed randomly in R;at start of simulation and allowed to evolve

46



Casell

Most of the particles reach R3
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Casell

e Most of the particlesreach Rj

801
60 1
<401
— width =4
207 —— width =3 |
0 —— width = 2 i

0 1000 2000 3000 4000 5000

t w,

idth
Mean occupation number of particles in R
for various widths of Ro 48



I

Case |I: Cooperation of particles motion in direction of
higher damping ( forward direction)

Direction of increasing damping
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Caselll

Brownian particles are placed randomly in R3 at start of simulation and allowed to evolve.
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Casell

Most of the particles are unable to cross via R».
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Caselll

100+
90+
)
S 807

70

60

— width =4
— width =3
— width =2

o

0 1000 2000 3000 4000 5000
t

Mean occupation number of particles in R
for various widths of Rz




Case ll: Opposition of particles motion in
direction of lesser damping ( backward
direction)

Direction of increasing damping
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Conclusion

Cooperation in particles motion towards regions of higher damping in presence of damping
gradient.

Opposition in particles motion towards regions of higher damping in presence of damping
gradient.

Entropic pulling in such systems can generate diffusion diode effect.
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Consider a Brownian chain confined inside a funnel like geometry in contact with a heat
bath at temperature 7’

R1& R3 : hollow right circular cylinder of radius R & 7 respectively.
Ry :frustum of cone withradii /R &7 ,where R > T

h : height of each region.
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Casel

A
=5 S; : Cross- section radius

Coordinate dependent damping experienced by a monomer in aregion is inversely proportional
to radius of circular cross-section in which it is present.

Initial state of polymer : Linear unfolded configuration with chain lying on 2 axis inregion R;.

000009

Gaussian distributed random variable with zero mean, unit strength, no cross correlation.
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Caselll

I'; = constant

e Constant damping

e Initial state of polymer : Linear unfolded configuration with chain lyingon z axisinregion R

000009

e Random numbers used are same asin case l.
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60 - Rs
50-
40
IS
301 b S
20 Case |
Rl Case 11
0 10000 20000 30000
t

Average motion of centre of mass in Z direction
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Constant damping

Coordinate dependent
damping
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http://www.youtube.com/watch?v=c46BubA9Nkg

e Now,we removeregions R; & Rs.

e Onlyhave region R2. Compare transport for various damping strengths.

A
I= =
S

A : Damping gradient strength

0 5000 10000
t

Variation of average position of centre of mass in z direction for various damping
gradient.
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0.0018+ @ Data

Linear fit

0.00157

R? =0.999

<t 0.0012;
0.00091
0.0006 1
1/A : Diffusivity gradient strength 0.05 O..l() O.'15 0.'20 O.'25
1/A

Variation of average velocity of centre of mass in 2 direction for various diffusivity
gradient.



Conclusion

The [t6 process facilitates the transport of mesoscopic object from a wider region to
narrower one.

This also means that the mesoscopic entity can remain trapped after reaching region of
high damping.
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Hsp70 chaperones are central components of the cellular network that
ensures the structural quality of proteins. Despite crucial roles in processes
such as protein disaggregation and protein translocation into organelles, their
physical mechanism of action has remained hotly debated. To the best of our
knowledge, no experimental data has directly proven any of the mod-

els proposed to date (Power Stroke, Brownian Ratchet, or Entropic Pulling)
due to a lack of suitable methods. Here, we use nanopores, a powerful single-
molecule tool, to investigate the mechanism of Hsp70s. We demonstrate that
Hsp70s extract trapped polypeptide substrates from the nanopore by gen-
erating strong forces (equivalent to 46 pN over distances of 1 nm), that rely on
the size of Hsp70. The findings provide unambiguous evidence of the Entropic
Pulling mechanism, thus solving a long-standing debate, and proposing a
potentially universal principle governing diverse cellular processes. Addi-
tionally, these results highlight the utility of biological nanopores for protein
studies.
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Thank you!!

Questions??
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