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Environment/vacuumQuantum 
system

• Number of particles that leave or enter the system as a function of time ? 

• What about density profiles, currents, number fluctuations, higher cumulants ? 

• How long does it take to empty or fill a system ? 

• What about entanglement entropy between system and its complement (environment) ?

• Is there a field theory description / rate equation that captures essential features ? 

• Is there some connection between entanglement entropy and Boltzmann entropy ? 

• How imperfections (such as dephasing) or inherent interactions gets encoded in quantities mentioned above ?

• What about long-ranged models ?  

Central Platform



• Possible relevance to black holes

• Entanglement between black holes and the radiation starting from the unentangled initial state of just the back hole

• As the black hole radiates, the effective Hilbert space dimension of the radiation increases and there will be 

     a corresponding increase in the entanglement entropy.

• However, this increase has to stop at some time when the black hole and radiation have the same Hilbert space 

     dimensions. Beyond this time (referred to as the “Page time”), the entropy has to decrease.

Page (1993, 2013)
Collective theory for Page Curve–like Dynamics  of a Freely Expanding Fermionic Gas



• Possible relevance to black holes

• Entanglement between black holes and the radiation starting from the unentangled initial state of just the back hole

• As the black hole radiates, the effective Hilbert space dimension of the radiation increases and there will be 

     a corresponding increase in the entanglement entropy.

• However, this increase has to stop at some time when the black hole and radiation have the same Hilbert space 

     dimensions. Beyond this time (referred to as the “Page time”), the entropy has to decrease.

• The fact that gc is not equal to g is why we call it “defect”. We consider three types of defects: conformal,

hopping, onsite. 

Calabrese, Cardy (2005)

Bertini, Fagotti, Piroli, Calabrese (2018)
Alba, Bertini, Fagotti, Piroli, Ruggiero (2021)
and many more..

Very recent:  Kehrein (2024), Glatthard (2024,2025)

Page (1993, 2013)
Collective theory for Page Curve–like Dynamics  of a Freely Expanding Fermionic Gas



Bilinear Hamiltonians

Total Hamiltonian 

Length of reservoir Correlation matrix Dynamics

Quantities of interest that can be extracted from correlation matrix 

Density

Current

Von-Neumann Entanglement Entropy

Particle number fluctuations in system

Eigenvalues of part of correlation matrix
For Gaussian initial states we can compute the following



Generalized Hydrodynamic Description 

• The evolution of integrable systems observed on large time and length scales is described by generalized 

hydrodynamics

• The idea is that the system is a gas of quasiparticles that carry fixed momentum labels k and has a phase-space 

density nt(x, k). 

• These quasiparticles drift with velocities which is given by the derivative of dispersion relation. 

Euler equation:

in our case Coarse grained wigner function

• This equation needs to be solved with appropriate boundary conditions

• From nt(x, k), quantities of interest can be extracted such as density, average current, “hydrodynamic” entropy 

• We can essentially get analytical solutions

Reviews: Doyon (2020)
                    Essler (2022)

Reminiscent of collisionless
Boltzmann equation / kinetic theory



Solutions to Generalized Hydrodynamic Description 

Solution on infinite line: 
(boost the function)

where

Recall:



Solutions to Generalized Hydrodynamic Description 

Solution on infinite line: 
(boost the function)

where

Recall:

For our case, it is crucial to consider boundary conditions which is going to be instrumental in capturing Page-Curve

Transmission Reflection defect gc is

encoded in 
reflection and 
transmission
coefficients



Density profile from hydrodynamics:

Quantities of interest

Hydrodynamic/Thermodynamic  
(Yang-Yang) entropy :
 (not Von-Neumann entanglement entropy)

See also: Pandey, Bhat, Dhar, Goldstein, Huse, M. K,  Kundu, Lebowitz 
(2023)

We will discuss more on this
in next slide



Density profile from hydrodynamics:

Quantities of interest

Hydrodynamic/Thermodynamic  
(Yang-Yang) entropy :
 (not Von-Neumann entanglement entropy)

Phase-space dynamics

See also: M.K., Mandal, Morita
                     (2018) 

See also: Pandey, Bhat, Dhar, Goldstein, Huse, M. K,  Kundu, Lebowitz 
(2023)

We will discuss more on this
in next slide



Hydrodynamic/Thermodynamic  
(Yang-Yang) entropy :
 (not Von-Neumann entanglement entropy)

Von-Neumann Entanglement Entropy

Eigenvalues of part of correlation matrixRecall

Various Entropies

Yang-Yang entropy
➢ The idea is to first look for all density matrices that satisfy a given constraint which in our case
       is 

➢ In this space of density matrices find the one that maximizes 

It can be shown that 

This is same as Yang-Yang entropy given in the box above



Density evolution and Page-Curve Entanglement

Recall:

Exact:

Can analytically extract early time (setting s=0) and also late time (using Poisson summations)



Conclusions to Part A Saha, MK, Dhar (PRL 2024)

• Numerically and analytically amenable platform to capture essential features of a Page curve

• Semiclassics enables us to understand analytically the page curve, both early and late times

• Yang-Yang/thermodynamics entropy of the system remarkably agrees well with the von-Neumann entanglement entropy

• On the other hand, reservoir entropy only agrees at early times and keeps on increasing.
      (Black hole analogy: Radiation entropy computed from semi-classical theories keeps increasing ?) 

Samuel Velasco, Quanta Magazine

Review on entanglement 

in SYK and its generalizations:

Zhang (2022)



Page curve like dynamics in Interacting Quantum Spin Chains

See also 

Jha, Manmana, Kehrein, arXiv:2502.03563 

Li, Kehrein, Gopalakrishnan, arXiv:2502.03524

Related: Fujimoto, Sasamoto (PRL, 2025)

Ray, Dhar, MK  (arXiv:2504.14675) 

in the talk, we will focus on 
interacting bath

(Equivalent to fermions in 1D with integrable and non-integrable interactions)

Large Bath



Basic Quantities of Interest

Total Magnetization dynamics or equivalently total magnetization gained in bath

or equivalently variance in bath

von Neumann entanglement entropy where pure state

Boltzman entropy

(i)  Define our coarse-grained description (macrostate) of the full setup. 

(ii) The macrostate we consider is one where we divide the full setup into spatial cells of size LS and specify the 

average number of particles (or magnetization)  and the average energy in each cell. 

(ii) The Boltzmann entropy then essentially counts the number of microstates that correspond to this macrostate. 

Large Bath

See also: Pandey, Bhat, Dhar, Goldstein, Huse, MK, Kundu, Lebowitz, J. Stat. Phys. (2023)



Procedure for computing the Boltzmann entropy

(using TEBD)

Boltzman entropy for the system

Using above compute average energy and average magnetization

Find the the grand-canonical (GC) distribution
Yet to determine these two parameters for each time
step

Solve for the two parameters numerically such that 

Large Bath



Procedure for computing the Boltzmann entropy

Boltzman entropy for the system

Using the numerical solutions for the two parameters compute  

Finally, compute the Boltzmann entropy of the system

Important: Unlike von-Neumann entropy for pure state, the Boltzman entropy for system and bath are different



Procedure for computing the Boltzmann entropy

Boltzman entropy for the system

Using the numerical solutions for the two parameters compute  

Finally, compute the Boltzmann entropy of the system

Important: Unlike von-Neumann entropy for pure state, the Boltzman entropy for system and bath are different

Boltzman entropy for the bath

Divide the bath into spatial bins where each bin has an equal number of sites

Compute total energy and total magnetization for each bin

Follow similar procedure (as employed for the system) and then finally compute 



von-Neumann entanglement entropy at very early times 

Just a Taylor expansion

Recall: We have two initial states for the system  (i) Polarized state (ii) Infinite temperature state 

Polarized state

Bath always 

• Only sites that are affected by this dynamics are the 2 sites on either side of the system bath boundary. 

• The rest of the system and the bath remain decoupled from these 4 sites, and dynamics is governed by the 

dynamics of these 4 sites.

• We get



Magnetization and fluctuation at very early times 

Infinite temperature state

• Even for very early times, computing von Neumann entropy for infinite temperature state is challenging

• But magnetization and variance is feasible

• Let us start with
 

Normalization

complex numbers chosen from a distribution with mean zero and 
variance  ½.

Sz product basis of the system in half-filled sector

We will now discuss numerical results that will capture, very early, intermediate and long times



Numerical Results

Large Bath

Recall

integrability breaking in system

Method employed - Time evolution block decimation (TEBD) method, represent states as matrix product states (MPS), 

Bond dimension cutoff is 150. 

Bath is integrable in 
all cases

We will present four cases in this talk (i) integrable polarized (ii) integrable infinite temperature 
                                                                                (iii) non-integrable polarized (iv) non-integrable infinite temperature



Numerical Results for Integrable case – Domain Wall

Fraction escaped around page time – 0.74

Fraction escaped around page time – 0.55



Numerical Results for Integrable case – Infinite temperature case

Fraction escaped around page time – 0.45

Fraction escaped around page time – 0.41



Numerical Results for Integrable case – Comparion with system and bath Boltzman entropy

Domain Wall Infinite Temperature

Samuel Velasco, Quanta Magazine

Reminiscent



Numerical Results for non-integrable case Recall (non-integrable case)

set to 1

Domain wall



Numerical Results for non-integrable case Recall (non-integrable case)

set to 1

Domain wall

• Dynamics freezes (filled initial state has a high overlap with a single 

localized eigenstate of the entire setup (system and bath).

• After an initial growth, all quantities eventually seem to saturate 



Numerical Results for non-integrable case

Infinite temperature



Conclusions to Part B 
Ray, Dhar, MK  (arXiv:2504.14675) 

• Quantum dynamics of the von-Neumann entanglement entropy for an interacting system

     with and without integrability breaking interactions, connected to a bath

• Also, computed mean particle number and particle fluctuations as a function of time

• Two initial conditions, (i) domain wall and (ii) infinite temperature

• Thorough characterization of page curve and related exponents 

• Coarse grained Boltzman entropy and its comparision with fine grained entanglement entropy

• It will be interesting to develop a thorough understanding from hydrodynamics / generalized hydrodynamics



Quantum Injection of particles

Central question: What happens when we inject particles in a system that is (i) either itself subject
to dephasing mechanism or (ii) is itself inherently interacting

Main quantities of interest in this part of the talk are spatial density profile and the total number of 

particles.

T. Ray, k. Ganguly, MK, Agarwalla 
 (manuscript in preparation)



Quantum Injection of particles

Central question: What happens when we inject particles in a system that is (i) either itself subject
to dephasing mechanism or (ii) is itself inherently interacting

Main quantities of interest in this part of the talk are spatial density profile and the total number of 

particles.

T. Ray, k. Ganguly, MK, Agarwalla 
 (manuscript in preparation)

Before proceeding to the case (i) and (ii) mentioned above, we will discuss an earlier result,

Trivedi, Gupta, Agarwalla, Dhar, Mk, Kundu, Sabhapandit (PRA 2023) on  “Filling an empty 

lattice by local injection of quantum particles”

• Setup to study quantum dynamics of filling an empty lattice of size L by 

connecting it locally with an equilibrium bath that injects noninteracting 

bosons or fermions.

• We will mainly discuss the Lindblad approach

Krapivsky, Mallick, Sels (2019,2020)
 Butz, Spohn (2010)

Many past and recent literature on “localized loss”



System

Reduced density matrix of system Loss of particles

Gain of particles

m stands for
middle injection 
point



System

Reduced density matrix of system Loss of particles

Gain of particles

We will write down equation for the correlation matrix 

m stands for
middle injection 
point

plus/minus stands for bosons/fermions respectively

Spatial density profile



Interestingly, it turns out that ni(t ) can admit an interesting scaling form. To do so, let us take the limits

Total occupation



What happens when we inject particles in a system that is (i) either itself subject to dephasing 
mechanism or (ii) is itself inherently interacting.

We will first discuss case (i)



What happens when we inject particles in a system that is (i) either itself subject to dephasing 
mechanism or (ii) is itself inherently interacting.

We will first discuss case (i)

where

This equation is difficult to
solve analytically. 

[without gain]
Ishiyama, Fujimoto, Sasamoto 
J. Stat. Mech. (2025)



where

Recall

Before attempting an analytical solution, we will present below the numerical findings.



where

Recall

Before attempting an analytical solution, we will present below the numerical findings.

Key findings from numerics

➢ There is a linear early time behaviour that depends on 
injection rate. 

➢ There is a square-root behaviour at later times with diffusion 
constant that depends on dephasing rate but is independent of injection rate

➢ Between these two time-scales the system goes trough a “congestion”
which almost takes the shape of a plateau.   
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• We will now discuss some analytical results both at early and late times.
• For late-times, we will use the fact that the behaviour is independent of injection rate
      thereby enabling us to use a special value of injection rate that makes analytics more 
      feasible. 



• We will now discuss some analytical results both at early and late times.
• For late-times, we will use the fact that the behaviour is independent of injection rate
      thereby enabling us to use a special value of injection rate that makes analytics more 
      feasible. 

Very early times:

• This is a trivial regime where just at most one particle enters the system.

• During this time-scale even the hopping rate J does not play a role. Hence, coherences also
      donot develop 

• Only the below equation for the first site matters 

(short time expansion )

• This linear growth has been verified with exact numerics as seen in plot above

The late time square-root behavour is analytically more tricky which we will discuss next



Analytical understanding of the diffusive behaviour

We start with the equations for the correlation matrix 

We will do an “adiabatic approximation”. This involves taking a large dephasing limit

?

The adiabatic approximation is about a separation of time-scales. The time scale at which the coherences relax is assumed 
to be much shorter than the times-scales of the population. This leads to 

The EOM for the diagonal terms of the correlation matrix (densities) is given by

We will simplify this equation by using the equation above it and ignore second-neighbour correlations



We finally get
Define

where

which gives

The main task in now to analyse the matrix A

In the weak gain limit 

Even after this the matrix is not easy to analyse. So we go to a special case 



Special case (SC)



Special case (SC)

Converting summation to integration

In the limit we can show spatial density profile 

and the total number of  particles

At special case

Direct numerics and analytics match



What happens when we inject into an interacting quantum system ? 

We will study two types of interacting systems

Quasi-periodic XXZ chain

irrational number

Next nearest neighbour XXZ spin chain

Next-nearest neighbor
integrability breaking term

Since these are chaotic / non-integrable quantum systems, we would expect to see diffusive behaviour.
We now numerically look for evidence for it using TEBD algorithm. 



Quasi-periodic model

What happens when we inject into an interacting quantum system ? 

We see squareroot time behaviour but we are still awaiting better data 



What happens when we inject long-ranged systems that are subject to dephasing ? 

See,
Schuckert , Lovas, Knap (PRB 2020)
Dhawan, Ganguly, MK, Agarwalla (PRB 2024)
Nishikawa, Saito (2025)
Catalano et al, PRL (2025)

Key findings

These exponents  of the injection problem 
seem to be  the same as several long-ranged
papers  in slightly different contexts



Conclusions to Part C 

• We studied injection of particles on lattices

• Two cases  (i) either itself subject to dephasing mechanism or (ii) is itself inherently interacting.

• For the dephasing case, we provided numerical and analytical results.

• For the interacting case, we provided TEBD results showing square-root behaviour. 

• We discussed long-ranged case subject to dephasing. 
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