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Central Platform

Quantum
system

Environment/vacuum

Number of particles that leave or enter the system as a function of time ?

What about density profiles, currents, number fluctuations, higher cumulants ?

How long does it take to empty or fill a system ?

What about entanglement entropy between system and its complement (environment) ?

Is there a field theory description / rate equation that captures essential features ?

|s there some connection between entanglement entropy and Boltzmann entropy ?

How imperfections (such as dephasing) or inherent interactions gets encoded in quantities mentioned above ?

What about long-ranged models ?



Collective theory for Page Curve—like Dynamics of a Freely Expanding Fermionic Gas

Page (1993, 2013)
Possible relevance to black holes
Entanglement between black holes and the radiation starting from the unentangled initial state of just the back hole

As the black hole radiates, the effective Hilbert space dimension of the radiation increases and there will be
a corresponding increase in the entanglement entropy.

However, this increase has to stop at some time when the black hole and radiation have the same Hilbert space
dimensions. Beyond this time (referred to as the “Page time”), the entropy has to decrease.



{3. Collective theory for Page Curve—like Dynamics of a Freely Expanding Fermionic Gas
QP Page (1993, 2013)

* Possible relevance to black holes
« Entanglement between black holes and the radiation starting from the unentangled initial state of just the back hole

» As the black hole radiates, the effective Hilbert space dimension of the radiation increases and there will be
a corresponding increase in the entanglement entropy.

» However, this increase has to stop at some time when the black hole and radiation have the same Hilbert space
dimensions. Beyond this time (referred to as the “Page time”), the entropy has to decrease.

N1 2N\ 8 Filled system g 1 /-\E Empty reservoir .
0 0 0 0 g 0 ""'9"%“ 0 0 0 0 0 0 0 sEmEsEEn

X oo Calabrese, Cardy (2005)
H= Z hijcle; Bertini, Fagotti, Piroli, Calabrese (2018)
i, j=—N+1 Alba, Bertini, Fagotti, Piroli, Ruggiero (2021)
and many more..

,1’3” — —‘g(f;ij i1+ Ot ;.) Vi, j#1,0. Very recent: Kehrein (2024), Glatthard (2024,2025)

« The fact that g, is not equal to g is why we call it “defect”. We consider three types of defects: conformal,
hopping, onsite.



Bilinear Hamiltonians

/Length ozl Correlation matrix Dynamics
. (.. = {CTC-> C(t) = EEh.“C 0 E'-Eh".
Total Hamittonian = Y00 _y,1 hiytley. | e \() (0) 5

\_

~

Von-Neumann Entanglement Entropy S = trs[pslog ps] =—> [

Quantities of interest that can be extracted from correlation matrix \

Density p(i) = (&T¢))
Current I =2gIm[(&}2,)]

Eigenvalues of part of correlation matrix
For lan initial states w n compute the followin /\

N
[(1 = my) log[1 — m;] + m;log m;]
=1

N o N
{ar"ricle number fluctuations in system k2 = (A7) = (A)? > p—1 me(1 —my) /




Generalized Hydrodynamic Description Reviews: Doyon (2020)
Essler (2022)

The evolution of integrable systems observed on large time and length scales is described by generalized
hydrodynamics

The idea is that the system is a gas of quasiparticles that carry fixed momentum labels k and has a phase-space
density ny(x, k).
These quasiparticles drift with velocities which is given by the derivative of dispersion relation.

Euler equation: (9, + sin[k|d,)n,(x, k) = 0.
/ Reminiscent of collisionless

' i ‘ Boltzmann equation / kinetic theory
in our case Coarse grained wigner function

« This equation needs to be solved with appropriate boundary conditions
« From n(x, k), quantities of interest can be extracted such as density, average current, “hydrodynamic” entropy

 We can essentially get analytical solutions



Solutions to Generalized Hydrodynamic Description

Recall: (0, + sin[k]a,)n,(x, k) = 0.

Solution on infinite line:  n;(x, k) = ng(x — tsin(k), k) where no(z, k) = 0(—x) — 0(—x — N)
(boost the function)



Solutions to Generalized Hydrodynamic Description

Recall: (0, + sin[k]a,)n,(x, k) = 0.

Solution on infinite line:  n;(x, k) = ng(x — tsin(k), k) where no(z, k) = 0(—x) — 0(—x — N)

(boost the function)

For our case, it is crucial fo consider boundary conditions which is going to be instrumental in capturing Page-Curve

/

4 Transmission Reflection ) defect g, is
encoded in
k / reflection and
ne(z > 0,k) =ny(z >0,k >0) =Y TpR;(0(—z — 25N + tsinfk]) — 6(—z — 2sN — 2N + ¢sin[k])). ggg:ﬁrgfﬁt'gn
\ . /
N s . . )
ny(z <0,k >0) = Z R} (6(—z — 2sN + tsinlk]) — 0(—z — 2sN — 2N + tsin[k]))
s=0
ne(z <0,k <0) = Z RiTH(@(x — 25N — tsin[k]) — 0(z — 2sN — N —tsin[k])) + Ry (0(—x +2sN + tsin[k])
s=0
— §(—x + 2sN — N + tsin[k])) )

-




Quantities of interest

T dk See also: Pandey, Bhat, Dhar, Goldstein, Huse, M. K, Kundu, Lebowitz
[Densi’ry profile from hydrodynamics:  p(x) = / 2—nf(x, k)] (2023)
_g 2T
veredmaie/ ernedinaic ~ dk N
(yz:mg—\’lllng) entropy : v Shydm(x) - = [ﬁﬂ [”r(L k) log(”r(x~ k)) + (1 — ny(x. k)) log (1 — n,(x, k))}
(not Von-Neumann entanglement entropy)
(S) 0 (R) o
Shydro — / dx Shydro ()C) ’ Shydm — / dx Shydro ()C)
—-N 0 Y,

o

\3 We will discuss more on this

in next slide



Quantities of interest

T dk See also: Pandey, Bhat, Dhar, Goldstein, Huse, M. K, Kundu, Lebowitz
Density profile from hydrodynamics:  p(x) = / 2—n,(x, k) (2023)
J—n &0
(Hyd i i = dk A
rodynamic/ Thermodynamic
(y{lng_\};ng) enTr'opy . Y Shydm(x) - = !/;E % [”I('x* k) log(nf(x. k)) + (l o ”r(x~ k)) lOg (1 _ ”r(x~ k))}

(not Von-Neumann entanglement entropy)

O = ["a A
hydr() _ o X S]]ydl’t}(x) ' hydn) _ 0 X Shydl‘[}(x)

N /
(a) |
_N+1 N\ & Filled system 1 /"\g Empty reservoir +o00 We will discuss more on this
ST SR L LS, S— ..g.%.. Vs Y G WU S W - S ——— in next slide
0 E \j 25()
'It — # - ._,ﬁ

(b) 7 (@ e

m T 0.9 .

3 3 N Phase-space dynamics
2 0 e 0

- T 0.5 See also: M.K., Mandal, Morita

) -3 y (2018)
pu o .
- N 0 100 200 —N 0 100 200 —N 0 100 200 0.1
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Various Entropies

~

/
Recall Eigenvalues of part of correlation matrix
N
Von-Neumann Entanglement Entropy S = trs[pslog ps|] == [(1 - m)log[l —m] + m;log m]
\ =l

/

/Hydr'odynamic/ Thermodynamic
(Yang-Yang) entropy :
(not Von-Neumann entanglement entropy)

-

Shydm(x) - /

0
S
‘S‘](]y)dr() — /N dx Sh)’dl‘[} (x) ?

z dk

~

n,(x, k) log(n,(x. k) + (1= n,(x,k))log (1 — n,(x,k))]

§(®)

“hydro

00
- /{; dx Shydro (.JC)

J

Yang-Yang entropy

» Theidea is to first look for all density matrices that satisfy a given constraint which in our case
is n(x, k,t) = Tr[A(x, k)pa] = Tr[A(x, k)p]

» Inthis space of density matrices find the one that maximizes S = —Tr[5In 7]

It can be shown that

0
S = —T[pmInpm] = - [_Ndx/g (e, k) log(ne(x, K)) + (1 — ne(x, k) log(1 — ne(x, k)]

This is same as Yang-Yang entropy given in the box above
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Density evolution and Page-Curve Entanglement
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Can analytically extract early time (setting s=0) and also late time (using Poisson summations)



The Page Curve

When a black hole releases radiation, the radiation and the black
hole should be quantum mechanically linked. The total amount
of connection is called the entanglement entropy. According

to Stephen Hawking’s original calculations, this quantity keeps
rising until the black hole dies. But if information gets out, the
entanglement entropy should instead follow the Page curve.

Hawking's
entropy
calculation
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Page time

Samuel Velasco, Quanta Magazine

Conclusions to Part A Saha, MK, Dhar (PRL 2024)

Review on entanglement
in SYK and its generalizations:
Zhang (2022)

* Numerically and analytically amenable platform to capture essential features of a Page curve

« Semiclassics enables us to understand analytically the page curve, both early and late times

« Yang-Yang/thermodynamics entropy of the system remarkably agrees well with the von-Neumann entanglement entropy

* On the other hand, reservoir entropy only agrees at early tfimes and keeps on increasing.
(Black hole analogy: Radiation entropy computed from semi-classical theories keeps increasing ?)



1) Page curve like dynamics in Interacting Quantum Spin Chains

0%
Large Bath ‘
System I Bath
e -0 000 000000
okl ~Ls+3 -2 0 1 Lg=2 Ly—1 L

| -
Hy=J ) o (SFS1 + 5.S]) + ASSS;

i+l

S Y
=—(Lg—1)

System is either in -

® filled state - | 1 -+ 1)

1 - - IQT
® Infinite temperature half-filled state Hyys pun=J |5 (S3S7 +57S7) +ﬁ5w9.]

(Equivalent to fermions in 1D with integrable and non-integrable interactions)

Bath is in the empty state- | | -+ | )

Ray, Dhar, MK (arXiv:2504.14675)

See also

Jha, Manmana, Kehrein, arXiv:2502.03563

Li, Kehrein, Gopalakrishnan, arXiv:2502.03524
Related: Fujimoto, Sasamoto (PRL, 2025)

interacting bath

L1 g .
Hyyp=J 2 E [SE-FS‘:_I +.5:_|S‘+} + .ﬁ.ﬂ?ﬂf_‘_I] En the Talk, we will focus on ]
i=1




Basic Quantities of Interest Large Bath

Bath

_____ . .r. L O— o —O—O—O—OL0-L0

Lo+1 | -Lg+3 -2 0 1 Lp=2 L-1 L,

0 . . : :
==) Total Magnetization dynamics S?:ys = 25:_@5_1) Si or equivalently total magnetization gained in bath

=) variance(SZ) orequivalentlyvariance in bath

=y (v

== von Neumann entanglemententropy Sw = —Trapalnps=—Trgpslnps where Pa/s = Trg/ap pure state

==) Boltzman entropy
(i) Define our coarse-grained description (macrostate) of the full setup.

(ii) The macrostate we consider is one where we divide the full setup into spatial cells of size Lg and specify the
average number of particles (or magnetization) and the average energy in each cell.

(i) The Boltzmann entropy then essentially counts the number of microstates that correspond to this macrostate.

See also: Pandey, Bhat, Dhar, Goldstein, Huse, MK, Kundu, Lebowitz, J. Stat. Phys. (2023)

v



Procedure for computing the Boltzmann entropy Large Bath

v

System , Bath

Boltzman entropy for the system o0 00 00— —0-0-0-0Lolo

S N -2 ._ 0 1 Ly—2 Lz—-1 1L

m=)  Compute the state of the entire setup |y(z)) for all ¢ (using TEBD)

mm) Using above compute average energy and average magnetization

Exys(t) = (W) Hays|W (1)) Myys(r) = (w(0)[S5]w(2)), =50 @S

==) Find the the grand-canonical (GC) distribution

Yet to determine these two parameters for each time
step

(1) = B Hys—n(D5,5)

=) Solve for the two parameters numerically such that  Tr [Hsyspsys(r)} = Eqys(1),
Tr | S5P0 (1)) = Mays(2).



Procedure for computing the Boltzmann entropy

Boltzman entropy for the system

1 z
mm) Using the numerical solutions for the two parameters compute pzf(r) = me—ﬁ(ﬂ(%ys—u(r)&yﬁ)

Sys
GC

m=) Finally, compute the Boltzmann entropy of the system S; = —Trp X Inp

Important: Unlike von-Neumann entropy for pure state, the Boltzman entropy for system and bath are different




Procedure for computing the Boltzmann entropy

Boltzman entropy for the system

1 z
mm) Using the numerical solutions for the two parameters compute pzf(r) = me—ﬁ(ﬂ(%ys—u(r)&yﬁ)

==) Finally, compute the Boltzmann entropy of the system S; = —Trp Y Inp>”*

Important: Unlike von-Neumann entropy for pure state, the Boltzman entropy for system and bath are different

Boltzman entropy for the bath

==) Divide the bath into spatial bins where each bin has an equal number of sites

=== Compute total energy and total magnetization for each bin

Epin(t) = (w(t)|Huin|w (1)) Myin(t) = (W ()| S5, | W (1))
Hyin =7 Y (SFSE +SUSY, | +ASISs, ) Sin= Y.
i€bin icbin

—> Follow similar procedure (as employed for the system) and then finally compute $ bath Z Sbm
bins



von-Neumann entanglement entropy at very early times

mmm) Recall: We have two initial states for the system (i) Polarized state (ii) Infinite temperature state
mm) | y(0)) = |Wsys(0)) @ [Whatn (0)) Bath always |Wban(0)) = |4,. .., )

) 2
mmm) Just a Taylor expansion e 7 |y(0)) = []I —itH — %Hz + 03| |w(0))

Polarized state

* Only sites that are affected by this dynamics are the 2 sites on either side of the system bath boundary.

« The rest of the system and the bath remain decoupled from these 4 sites, and dynamics is governed by the
dynamics of these 4 sites.

« We get 2 = e
S;:N = — (l — E) ng (] — E) — EIQEE

rE N rE
(Nbaﬂ'i} — Ie PHF{ baﬂ'n} — E




Magnetization and fluctuation at very early times

Infinite temperature state

* Even forvery early times, computing von Neumann entropy for infinite temperature state is challenging

* Butmagnetization and variance is feasible

: L_SCLS/Z
e Letus startwith /"

1 I
— ¥ ) @ 1)
)= TR

/ S?product basis of the system in half-filled sector
Normalization

Z

complex numbers chosen from a distribution with mean zero and
1

variance 3.
r* 3: @Lg—1 2 )
(Noatn) =17 (9(0)|[HNpanH |9 (0)) = QNZ cxr (| (LT H [, 4) 1) 1) 778 =3
kK
£2
var(Npagh) = 3
\__ J

We will now discuss numerical results that will capture, very early, intermediate and long times



Numerical Results

Recall
Large Bath ‘
System Iz Bath
L Ll D _1I | ; ;
-Ly+1 : -Ls+3 -2 ] 0 1 Lg-2 Lg-1 Ly
i
1 Bath is integrable in
Heo—J G¥ g l_|_‘50_JSJ:-' 1 ASES? Lg—1 o all cases
v ,-:_(LZS_”( S5 8151 TASISE ) Hoan = Y (S7Sfe1 + 575351 +ASiSE1) —
1=
—2 X QX ¥ ¥ Z QZ
Hgys—bath = J (S557 + 5357 +AS5S5) -
/ , sys—ba 0+~1 0~'1 0~1
+7' ) S

/ i=—(Ls—1)

integrability breaking in system

Method employed - Time evolution block decimation (TEBD) method, represent states as matrix product states (MPS),
Bond dimension cutoff is 150.

We will present four cases in this talk (i) integrable polarized (ii) integrable infinite temperature
(iii) non-integrable polarized (iv) non-integrable infinite temperature
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Numerical Results for Integrable case — Domain Wall

N <N lfath)
tPage
0t w0 10t 100

! <N kfath>
tPage
10! 100 10! 102

t (units of 1/.J)

n;

ny;

1.0+

0.81

0.61

0.4

1.0+

0.81

0.61

0.4+

0.21

0.01

10° E

o ]
oy 1071 E

10! 10?

t (units of 1/.J)

(c) A=0.8J

o) o 10°

10!
(units of 1/.J)

10° 4
z ]
wy 1071 4

1072 4

—ILg=5
Lg =10
Ls =20
Lg = 40

T
102

20
?

A =087
SPN o~ r{],j{]] {Nhaﬂ'l} ~ r{],&jj Vﬂ?‘(ﬂﬁmth) ~ 30'5]
Ipage =~ L_%'T

Fraction escaped around page time - 0.74

A=1.0J
0.31 0.66 0.58
SvN ~f o (Nbalh> ~ I q var(Nbaﬂ,) ~

Fraction escaped around page time - 0.55




1015

10~

lﬂl§

102

10~

Numerical Results for Integrable case —

Infinite temperature case

100
107"
1072

10 33

,fpié;
Sun/Ls
o var(Vig,)
—— (Njam)
LPage

(a) A =08J

100 10!

10";
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Sun/Ls

var( iV, b“[h)

10° 10!
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102
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I

— t=00
— t=20.0
—— t=40.0
t = 60.0
t = 80.0

t = 100.0
t = 120.0
t = 140.0
t = 160.0
t = 180.0

A=0.8J
S ~ 9%, (Noan) ~ 177, var (Noam) ~ 7

Fraction escaped around page time - 0.45

A=1.0J

0.78 ( 0.65

Swv ~ 1" (Npath) ~ 1‘0'84, var (Npath) ~ t

Fraction escaped around page fime - 0.41




Numerical Results for Integrable case — Comparion with system and bath Boltzman entropy

Domain Wall Infinite Temperature

0ty . N
[+ === o= = H- H= R =R . .
Reminiscent
1 The P C
: e Fage Curve
1 ‘E 2% f)T.- N . When a black hole releases radiation, the radiation and the black
10775 ; :K]? ] ) , 1077 hole should be quantum mechanically linked. The total amount
o S;;ﬂ[ : X of connection is called the entanglement entropy. According
102 X O 5*;:‘1 {a) A =0.8] 10-24 % " o 5;;'- (C) A =0.8T to Stephen Hawking’s original calculations, this quantity keeps
| ) rising until the black hole dies. But if information gets out, the
----- Lglog(2) Polarized X ===== Lglog(2) High Sp entanglement entropy should instead follow the Page curve.
3 3
1 10! 10° 10! 10 v 10! 10 10! 102
Hawking's
> entropy
o calculation
10" 104 2
------------------------------------------- 3 - R e ————— z
— 'li’ﬂn -
-l“[j_ rdf///ﬂ‘oﬂw\ "]H ] / é
r (0]
a® " <
@ R g
10-1 o x * Sun 1071 A% Sy
y <" 5};&[]1 . o 5‘}_};1111
k ~EVE N % EVE N
J_“—E "51; “3:] A 1.0.J l”—E J - m] }5{; (Cl} AN L.0.J Page time
""" Lslog(2)  Ppolarized X - Lslog(2) High sy )
10-3 . . . 10-3 . . -. Samuel Velasco, Quanta Magazine
10-! 10" 10! 107 1071 10° 10! 10

t (units of 1/.J)

t (units of 1/.J)




Numerical Results for non-integrable case Recall (nonl—m‘regr'able case)
Hsys =J Z (SfoH "‘Sysyﬂ "‘ﬂSzS:H)
Domain wall '=_{LS_”
10! !
—— S,n/Ls (a) A =0.8J +J Z Sz H_g:
0] T var(Ni) S — i=—(Ls—1)
—e— {Nin) :
1014
set to 1
10724
| —t=00 t = 300.0
D& A ——f=1000 1 =4000
_a - | =i = 200.0——1 = 500.0
10-3 - Glogt = |
104 ”‘2_ L________
. . |I| Jlu zlu :plu -1I|| 1]
i 101 10 10! 102
10!
—— /L
1074 var{ N )
—— (Niw)
10714 —
1024
t = 300.0
5 t = 400.0
ey ) 20001 = 500.0
4 |Dgf 0.4 |
I
1 1071 100 10! E 102

t (units of 1/.J)
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Numerical Results for non-integrable case Recall (nof‘l nTegrable case)
Hsys =J Z (SI'ISI{I—I _I_‘S‘ysy—l—l +"§“SZS¢+1)
Domain wall ‘=_{LS_”
10! !
—w— S.nilg (a) A =0.8J _|_j Z Sz I+2’
1094 var| '\-1- an) R =—{:L5l—1
—— {Njawn) -
107
set tol
1072
—t =100 t = 3000
—f = 100.0 t = 400.0
" ——f = 200.0——t = 500.0 ] .
1073 ' Clogt = “:| L 00 L0 Polarized initial state 1.00
10~ - | I__ R om5d[(@) A =05 | orsi[) A= 107] I omll@a=12s
e 10! 10 e 102 gn,an- 0.50 0.50 1
10! =
—— S.v/Ls —0.251 0.25 0.251
10 o 0.00 | r—— ()00 ‘| 0.00
—9—{_\“-|‘: .00 . . — . ﬁ
e 0 5000 0 5000 0 5000
1071 it eigenvector index eigenvector index eigenvector index
1072 ; : : . : : :
_. e * Dynamics freezes (filled initial state has a high overlap with a single
0 e o e localized eigenstate of the entire setup (system and bath).
4 2 0.4
1074 ' s iy
bad, .'-L s ]  After an initial growth, all quantities eventually seem to saturate
i 10! 10" 10! 102

t (units of 1/.J)



Numerical Results for non-integrable case

Infinite femperature
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(c) A=08J
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. Ray, Dhar, MK (arXiv:2504.14675)
Conclusions to Part B

Quantum dynamics of the von-Neumann entanglement entropy for an interacting system
with and without integrability breaking interactions, connected to a bath

Also, computed mean particle number and particle fluctuations as a function of time

Two initial conditions, (i) domain wall and (ii) infinite temperature

Thorough characterization of page curve and related exponents

Coarse grained Boltzman entropy and its comparision with fine grained entanglement entropy

It will be interesting to develop a thorough understanding from hydrodynamics / generalized hydrodynamics



Quantum Injection of particles T. Ray, k. Ganguly, MK, Agarwalla
(manuscript in preparation)

Central guestion: What happens when we inject particles in a system that is (i) either itself subject
to dephasing mechanism or (ii) is itself inherently interacting

Main quantities of interest in this part of the talk are spatial density profile and the total number of
particles.
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Quantum Injection of particles T. Ray, k. Ganguly, MK, Agarwalla
(manuscript in preparation)

Central guestion: What happens when we inject particles in a system that is (i) either itself subject
to dephasing mechanism or (ii) is itself inherently interacting

Main quantities of interest in this part of the talk are spatial density profile and the total number of
particles.

Before proceeding to the case (i) and (ii) mentioned above, we will discuss an earlier result,
Trivedi, Gupta, Agarwalla, Dhar, Mk, Kundu, Sabhapandit (PRA 2023) on “Filling an empty
lattice by local injection of quantum particles”

Empty lattice
1 g L
N

g —_— —l) o « Setup to study quantum dynamics of filling an empty lattice of size L by
‘TJ’ connecting it locally with an equilibrium bath that injects noninteracting
bosons or fermions.
ty <
Reservoir «  We will mainly discuss the Lindblad approach

B

Krapivsky, Mallick, Sels (2019,2020)
Butz, Spohn (2010)

Many past and recent literature on “localized loss”



Empty lattice L—1 Gain of particles
g
Noom o~ b Hs =g (alai +al, ), o ~ ;
— T — ee l i—1 pss = ilpss, Hs] + U'g[2a,, pssam — {amay,, pss}]
’ +TL[2ampssal, — {al am, pss},
t < System \ \
(. 1) middle injection
point




P Empty lattice 2
SN M o

Reservoir

B

Spatial density profile

Gain of particles

L—1
Hs =g ) (a]ai +a, ), —~

1 i1 pss = il pss, Hs| + Tgl2a}, pssam — {amay,, pss}]

+ FL[Qampssa; — {ﬂjnﬂm' Pss},
System \ \

Reduced density matrix of system m stands for
middle injection
point

Loss of particles

We will write down equation for the correlation matrix  C;; = (a, a;)

dC;
dt

=ig(Ci1,j —Cijy1 +Cia,j — Cij—1)

— F’{ﬁ;m + ﬁjm)cf,j +2 Fﬂﬁmfamj

/

IM=T.FTs plus/minus stands for bosons/fermions respectively

I
ni(t) =2Tg f dt |S:(7))?
0

\

Sty =J4Qgt)-T' f die Tt
0

N2
x(r {) Ji[2gv/ 1% —17]

T+1




Interestingly, it turns out that n;(t ) can admit an interesting scaling form. To do so, let us take the limits

i 00, 100, V=—~O0()
2gt
] b o ) — In( _ J(2 — — 0201 = (32 — _ 2
fii(r)zct,(;), where () = £LHVOINI 4V —n@+y - /@ - DA v - /@ -DA-v)
2t (F—1P2wg+1)
\ . 2g 4g
S VAN T()

| 2Tt 05~ (8)
Total occupation N(t)= — 28—m(1 — ) +2(1 —232)
g .-’ .

(1l —g%)
0.030 —0.5
/=8 —— t=170
0‘025_ - t:]_ﬁ _10_ — t:SO
e =32 smmi =0
0.020- — | — = 64 t = 100
A =151
= . ,’: v\ 3
% 0.0151 JoEn £
TR g 201
0.010- I 31y
1B
"R 251
I !
I 1
—3.0+ . ; |
15 31 3943 5963 71 87 —1.0 —0.5 lzg 0.5 1.0

site number (7) 3ot



What happens when we inject particles in a system that is (i) either itself subject to dephasing
mechanism or (ii) is itself inherently interacting.

We will first discuss case (i)

J _ (Coherent hopping)

Local injection of

fermions »‘—‘— AAAAA —9o— — 0O

Interactions activated
through dephasing

4 L
Hg = —JZ cjc,-H + h.c
i=1

dp . r
& = —i|Hg,p] +T'q [Ecipcl — {cchp}] — ?d Z [ﬂia [”i: P]]

- - J




What happens when we inject particles in a system that is (i) either itself subject to dephasing
mechanism or (ii) is itself inherently interacting.

We will first discuss case (i)

J _ (Coherent hopping)

Local injection of

fermions »’—‘— —@— — 0O

I'c r, IT, I, I, Ir, ] T,

Interactions activated
through dephasing

4 L )
Hg = —JZ cjc,-H + h.c
i=1
d , T This equation is difficult to
d_i = —ilHs,p] +Tc [QCIPCI ~{erel. F"}] - ?d Z; [ [nis o] solve c?nalyﬁcally.
= / /
M:_'Jc_ HaC H_C. () —C + [without gain]
dt ! ( m=1,n(t) + Cm+1n(t) = Cmn-1(8) = O )) where C,,..(t) = (c] (t)en(t)) Ishiyama, Fujimoto, Sasamoto

— Fg({ilm + Elﬂ}cm?n{t] + rd (5,11?].1 — l}C’mn(t] + ZFG ‘51m51n J‘ S.l.a.‘. MQCh. (2025)




Recall

dcn;,:(t) _ —iJ(Cm—l,n(ﬂ + Cras1n(t) = a1 (t) — cm:nﬂ(t))

_ _ : where C,, .(t) = (c] (t)cn(t))
—T6(61m + 812)Conn(®) + Ta (Omm — 1)Crmn(t) + 2T S1m1n

Before attempting an analytical solution, we will present below the numerical findings.

J _ (Coherent hopping)

Local injection of

fermions —»H— —9o— — 0O
Iﬂ(}y' Fd Fd Fd Fd rd Fd Fd

Interactions activated
through dephasing



Recall

dcn;,:(t) _ —iJ(Cm—l,n(ﬂ + Cras1n(t) = a1 (t) — cm:nﬂ(t})

_ _ : where C,, .(t) = (c] (t)cn(t))
—T6(61m + 812)Conn(®) + Ta (Omm — 1)Crmn(t) + 2T S1m1n

Before attempting an analytical solution, we will present below the numerical findings.

J _ (Coherent hopping)

Local injection of

J =10, L =1000, I'y =10.0 fermions —»H— —@— — 00

8 FG Fd Fd Fd Fd Fd Fd Fd
E 103 ]

B )

2 1074 Interactions activated

8 1 through dephasing

5 10* 4

2

g = 10 Key findings from numerics

T 2l

5 10 — T =100 » There is a linear early time behaviour that dependson

'g 102 —— T =100.0 injection rate.

a g —— [3E

= ww v,/ 2rﬂtd(r 1 » There is a square-root behaviour at later times with diffusion
E 10-4 Seves constant that depends on dephasing rate but is independent of injection rate

102 107t 10t 10°  10° 107
¢ » Between these two time-scales the system goes trough a “congestion”
which almost takes the shape of a plateau.



We will now discuss some analytical results both at early and late times.
For late-times, we will use the fact that the behaviour is independent of injection rate
thereby enabling us to use a special value of injection rate that makes analytics more

feasible.

J =1.0, L =1000,

T =100

I =0.1 (SC)
T =10
—— Tg=50
—— T =100
—— T =100.0

8J2¢t
mlaq

..... gt (Tg = 1)

1073 107! 10

103 105 107




cf‘)\ J =1.0, L =1000, I'; =10.0
*  We will now discuss some analytical results both at early and late times. Q% 10°

* Forlate-times, we willuse the fact that the behaviour is independent of injection rate 107 1
thereby enabling us to use a special value of injection rate that makes analytics more 10!
feasible. = 1l —— T =0.1 (SC)
— T'e=1.0
Z 1071 — I'e=5.0
— ['¢ =10.0
Very early times: 1072+ S
10—3 - P
..... gt (g =1)

« Thisisa trivial regime where just at most one particle enters the system.

T107° 1000 100 100 100 107
« During this time-scale even the hopping rate J does not play a role. Hence, coherences also t
donot develop

*  Only the below equation for the first site matters

dC 4
dt

=Wg(l—Cy) = Cq(t)=1—e 2" mmmd (,(t) =20t (shorttime expansion)

* This linear growth has been verified with exact numerics as seen in plot above

The late time square-root behavour is analytically more tricky which we will discuss next



J =1.0, L =1000,

A\
: : : : : >
Analytical understanding of the diffusive behaviour Q% 10°]
102 i
We start with the equations for the correlation matrix i ]
T I'e =0.1 (SC)
dCm (1 _ = 107 T =10
228 7 (G n®) + Conr n®) = O s () = G (1) Z o o 50
I'¢ =10.0
- FG(51m + Jln)cm,n(t) + rd (Jm_.n - 1)Om,n(t) + 2rG 51mf51n 1072 I'e =100.0
10_3 . ZFiJFj(F 1)
..... AN o=
We will do an "adiabatic approximation”. This involves taking a large dephasing limit I'a >> .J 104 . —_— - : :
10 107t 10t 10 10> 107
t

The adiabatic approximation is about a separation of time-scales. The time scale at which the coherences relax is assumed

to be much shorter than the times-scales of the population. This leads to

1J
Fﬂ[él,m + 61,?1.) + 1Ty

Cm,:rl —

(Cm—lsﬂ + Cﬂ1+1,n - crl"r.z_:.rl—l — Cm:n+1) ('m 7é ??«)

The EOM for the diagonal terms of the correlation matrix (densities) is given by

Cﬂl,m = —1J (Cm—l._m + Cfm-l—l_.m - Clrirn,'r:':-,—l - cfnt._m—l—]) - QFGél,mCﬂt,m -+ QFGgl,m

We will simplify this equation by using the equation above it and ignore second-neighbour correlations




We finally get f
Cﬂl,_,m = 4
dcdia.g
= ACy; P
dt diag =+

Define

2]-\_22 £0171—1 — QCm + Cﬂt_f_l} , 3 E m < L—1 Cm =Cmm
% (—=Cm + Crp1) — 2T (Cr, — 1), m=1

2J 1

sz |:1+FG;"FC£ (C'm,—l — C‘rn)‘ + C:I'“m.—|—1 - Cm] , M= 2

2] (cﬂl—l - Cﬂl} ) m = L

\ I'q

2J2/(Te +Tq)

—ag — 2l a9 0 0o --.- 0 0 \

(5] —(0.‘1 + 0!2) as) o ... 0 0

0 g —2&1 Xy =" 0 0

where A=

[.] - a1 —201 o

o DY
P — [2T,0,-- ,0], \

272)T,

which gives Cung(t) = (¢* —I) AP

The main task in now to analyse the matrix A
In the weak gain limit a2 = oy

Even after this the matrix is not easy to analyse. So we go to a special case I'g =a;/2




Special case (SC) e =a1/2

Cliag(t) = (e* —I) A™'P

-2 1 0
1 -2 1
0 1 -2
0
0

0 0\
0 0
0 0

1 -2 1
1 -1/

J =1.0, L =1000, Ty =10.0

T'e =0.1 (SC)
— Te=10
— T =50
— T =100
—— T =100.0

8J2¢t
mlaq

""" 20qt (T =1)

1073 1071 100 108 10° 107



Special case (SC) lc=a1/2 21 0 0
1 -2 1 0
0 1 -2 1

1&32&'1 .

0

0

Caiag(t) = (e —I) A™'P

|

L —4a1tsin2[—(2k_l:'w] .
ﬂ(t} _ 8la e ELFD] — ] {(Qk‘.— 1:]?T:| i [(Qk—l)z?r
b T 2L 41 . o [(2k—1)7 oL + 1 T
+ k=1 40.'1 Sin [{Z[QL—I—)I]] +

Converting summation to integration

— in2
—e 4oyt sin” k

Aoy sin® k

B 8 /2

™ Jo

n(t)

dk sin (2,‘2’) sin (2?&:&) L

In the limit > 1 we can show spatial density profile
and the total number of particles

[ ng(t) =1-Erf (2\/%) N(t) =2 ?]

2L +1

|

J =1.0, L =1000,

Iy =10.0

At special case

analytical - longtime
—e— analytical > n;

— ED
_____ E(l,'Z

10!

e

10!

102 1¢ et e e
t(units of 1/.J)

102 4
101 J
I'c =0.1 (SC
100 ] (SC)
— I'¢=1.0
1071 — I'e=5.0
— I'¢ =10.0
1072 —— T =100.0
3 e 8J2¢t
10 T
""" 2qt T =1)
1074 =4 o 11 13 \5 V7
10 10 10 10 10 10
t
---- ED o Long-time analytical
1.0 de06
_ 1e+06
0¥ B 05
0.6 E+05.3=__,.
& tepns @
0.4 ze+05iE
1e+05
0.2
1o+ 04
0.0 1e:03

0 25 Al o100 125 1A
T

Direct numerics and analytics match

b175 200




What happens when we inject into an interacting quantum system ?

We will study two types of interacting systems

/ \

-

¥ =

\_

L—-1

Hqop_xxz = J Z (SFSE. +

=1

p =~ ilHyp_xxz,P] + g

—1 (” ® Hop_xxz ~

uasi-periodic XXZ chain

Y Qy
Sz Sz—l—l

|p(0)) = e7"| p(0))

HE ., ® I]) +Tg

1
StPST —= {stfap}l

Next nearest nei

~

irrational number

L-1

L
+ AS7SE ) + WY cos(2mbi+ ¢)S]

=1 -
=1

Injection

\_

~

hbour XXZ spin chain

Hxnw—xxz =J Y (S7ST, + SYSY, + ASFST,) +J' Z S?SI o

Next-nearest neighbor
integrability breaking term

)

1
ST @ S - 5 1®SrsH+SrshHT @ u]l

/

Since these are chaotic / non-integrable quantum systems, we would expect to see diffusive behaviour.
We now numerically look for evidence for it using TEBD algorithm.



What happens when we inject into an interacting quantum system ?

Quasi-periodic model

L—-1

L L—1 L—-2
Hop-xxz =J Y (SFSZ, + S¥SYy + ASISZ,) + WY cos(2mbi + $)S? Hynn-xxz = J ) (STSF +SYSY + AS; STy ) +J' ) SiSh,
=1 i=1 i=1 i—1
A=05 J=10 J=1.0Tg=5.0
101 ’
~J
== -
= =
100 _
10-1 107 10! S
t (units of 1/.J) 101 100 101 102
L=20T,=10J,W=10J t

We see squareroot time behaviour but we are still awaiting better data



What happens when we inject long-ranged systems that are subject to dephasing ?

N N—m
Q. — J At n 1+ & &
5= me Crc-l"-i-m Cr+m:cr

m=I1 r=1

F, =30, Tig = 10, Ty = 50

101 i

- 10°4

10—1-

1024 /

t

07 107 0T T

10t

(Long range hopping)

' , r
% = —i[Hs,p]+T'c [QCJ{PCI — {CICLP}} - ?d Z [ﬂ’i‘ [ni,.p“

Interactions activated
through dephasing

See,

Schuckert , Lovas, Knap (PRB 2020)
Dhawan, Ganguly, MK, Agarwalla (PRB 2024)
Nishikawa, Saito (2025)

Catalano et al, PRL (2025)

Key findings

tTa-1 f
N(t)oc{ ) o

Q
tz for a>

N[O
IA
[\ [OV

These exponents of the injection problem
seem to be the same as several long-ranged
papers in slightly different contexts



Conclusions to Part C

We studied injection of particles on lattices

Two cases (i) either itself subject to dephasing mechanism or (ii) is itself inherently interacting.
Forthe dephasing case, we provided numerical and analytical results.

Forthe interacting case, we provided TEBD results showing square-root behaviour.

We discussed long-ranged case subject to dephasing.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: What happens when we inject into an interacting quantum system ? 
	Slide 46: What happens when we inject into an interacting quantum system ? 
	Slide 47
	Slide 48

