# Mean-field theory becomes exact under shear flow

# a dynamical renormalization group study of the phi-4 model arXiv:2412.02111 (2024)

Harukuni Ikeda (YITP, Kyoto Univ.) Hiroyoshi Nakano (ISSP, Tokyo Univ.)









The Institute for Solid State Physics The University of Tokyo



Mean-field theory ( $\phi^4$  theory)

Taylor expansion of free-energy by order parameter

$$F(\phi) = \frac{\varepsilon}{2}\phi^2 + \frac{u}{4}\phi^4 + \cdots \qquad \text{Z2 symmetry } F(\phi) = F(-\phi)$$
prohibits odd terms.



Mean-field theory ( $\phi^4$  theory)

Mean field critical exponents

Order parameter 
$$\phi = (-\varepsilon)^{\beta}, \beta = 1/2$$

Specific heat 
$$C = (-\varepsilon)^{\alpha}, \ \alpha = 0$$

Correlation length  $\xi = |\varepsilon|^{-\nu}, \nu = 1/2$ 

Susceptibility 
$$\chi = |\varepsilon|^{-\gamma}, \gamma = 1$$

Relaxation time  $\tau \sim \xi^z, \ z = 2$ 

# Mean-field theory ( $\phi^4$ theory)

#### **Critical exponents of Ising model**

|                                                 | d=2      | d=3                       | d>4                   |
|-------------------------------------------------|----------|---------------------------|-----------------------|
| α<br>(specific heat)                            | 0        | 0.110                     | 0                     |
| β<br>(order parameter)                          | 1/8      | 0.33                      | 1/2                   |
| ${oldsymbol {\mathcal V}}$ (correlation length) | 1        | 0.63                      | 1/2                   |
|                                                 | Dis<br>n | sagree with<br>nean-field | Agree with mean-field |

The mean-field theory fails to predict the critical exponents in d=2 and 3 in equilibrium.

Purpose of this study

# Motivation

- In equilibrium, the mean-field theory fails in d=2 and 3.
- What will happen far from equilibrium?
- We consider a model in shear flow as a prototypical example of a nonequilibrium system.

# Question: How does the steady shear flow affect the critical phenomena?

Our answer: Mean-field theory becomes exact in d=2, and 3.



- Dynamical scaling in equilibrium (review)
- Dynamical scaling under shear
- Comparison with numerics
- Summary and discussions



- Introduction
- Dynamical scaling in equilibrium (review)
- Dynamical scaling under shear
- Comparison with numerics
- Summary and discussions

# Dynamical scaling in equilibrium

#### Model

# We first review the dynamical scaling in equilibrium.

Langevin equation (model-A: nonconservative order parameter)  $\phi$ : order parameter  $\frac{\partial \phi(x,t)}{\partial t} = -\frac{\delta F[\phi(x,t)]}{\delta \phi(x,t)} + \sqrt{2T}\xi(x,t)$   $\xi$ : white noise  $\langle \xi(x,t)\xi(x',t')\rangle = \delta(x-x')\delta(t-t')$ 

> Free energy functional ( $\phi^4$  free energy)  $F[\phi] = \int dx \left[ \frac{k}{2} (\nabla \phi)^2 + \frac{\varepsilon}{2} \phi^2 + \frac{u}{4} \phi^4 \right]$

> > Steady state distribution  $P_{\rm eq}[\phi] \propto e^{-\frac{F[\phi]}{T}}$

**Canonical distribution** 

# Dynamical scaling in equilibrium Linear analysis

#### To simplify the analysis, we linearize the equation

 $\frac{\partial \phi(\boldsymbol{x},t)}{\partial t} = -\frac{\delta F[\phi(\boldsymbol{x},t)]}{\delta \phi(\boldsymbol{x},t)} + \sqrt{2T}\xi(\boldsymbol{x},t)$  $= k \nabla^2 \phi(x,t) - \varepsilon \phi(x,t) - u \phi(x,t)^3 + \sqrt{2T\xi(x,t)}$ Nonlinear term Linearize  $\frac{\partial \phi(\boldsymbol{x},t)}{\partial \boldsymbol{x}} = k \nabla^2 \phi(\boldsymbol{x},t) - \varepsilon \phi(\boldsymbol{x},t) + \sqrt{2T} \xi(\boldsymbol{x},t)$ 

# Dynamical scaling in equilibrium Critical exponents

We want to investigate the power-law scaling near the transition point

#### Scaling Ansatz

$$x = bx', t = b^{z}t', \phi(x, t) = b^{\chi}\phi'(x', t')$$



# Dynamical scaling in equilibrium

#### **Critical exponents**

$$\frac{\partial \phi'}{\partial t'} = k' \nabla'^2 \phi' + -\varepsilon' \phi' + \sqrt{2T'} \xi$$

$$k' = b^{z-2k} \quad \varepsilon' = b^z \varepsilon \quad T' = b^{\frac{z-2\chi-d}{2}} T$$

Scale invariance at transition point  $\varepsilon = 0$ k' = k, T' = T

Scaling relations 
$$z-2=0, \frac{z-2\chi-d}{2}=0$$

Critical exponents of the linear model (mean-field)

$$z = 2, \, \chi = \frac{2-d}{2}$$

# Dynamical scaling in equilibrium Correlation functions

**Two point correlation function**  $C(\mathbf{x}, t, \varepsilon) \equiv \langle \phi(\mathbf{x}, t) \phi(\mathbf{0}, 0) \rangle$ 

Scaling Ansatz  $x = bx', t = b^{z}t', \phi(x, t) = b^{\chi}\phi'(x', t')$  $C(x, t, \varepsilon) = b^{2\chi}C(b^{-1}x, b^{-z}t, b^{z}\varepsilon)$ 

Set the scaling parameter  $b = \varepsilon^{-1}$ 

$$C(x, t, \varepsilon) = \varepsilon^{-2\chi/z} C(x/\varepsilon^{-1/2}, t/\varepsilon^{-1}, 1)$$

 $\begin{array}{ll} \mbox{Correlation length} & \mbox{Relaxation time} \\ \xi = \varepsilon^{-\nu}, \ \nu = 1/2 & \ \tau = \varepsilon^{-1} \end{array}$ 

Correlation length and relaxation time diverge with power-law.

# Dynamical scaling in equilibrium Static structure factor

Two point equal time correlation function

$$C(\mathbf{x}, t, \varepsilon) = b^{2\chi} C(b^{-1}\mathbf{x}, b^{-z}t, b^{z}\varepsilon)$$



# Dynamical scaling in equilibrium Upper critical dimension

#### Scaling transform of the full equation of motion

$$\frac{\partial \phi(\mathbf{x}, t)}{\partial t} = k \nabla^2 \phi(\mathbf{x}, t) - \varepsilon \phi(\mathbf{x}, t) - u \phi(\mathbf{x}, t)^3 + \sqrt{2T} \xi(\mathbf{x}, t)$$
Nonlinear terms
$$b^{\chi - z} \frac{\partial \phi'}{\partial t'} = b^{\chi - 2} k \nabla'^2 \phi' - b^{\chi} \varepsilon \phi' - b^{3\chi} u \phi'^3 + b^{-\frac{d + z}{2}} \sqrt{2T} \xi$$

$$\frac{\partial \phi'}{\partial t'} = k' \nabla'^2 \phi' + -\varepsilon' \phi' - u' \phi'^3 + \sqrt{2T'} \xi$$

$$k' = b^{z-2k} \quad \varepsilon' = b^z \varepsilon \quad u' = b^{2\chi + z} u \quad T' = b^{\frac{z-2\chi - d}{2}} T$$

# Dynamical scaling in equilibrium Upper critical dimensions

$$\frac{\partial \phi'}{\partial t'} = k' \nabla'^2 \phi' + -\varepsilon' \phi' - u' \phi'^3 + \sqrt{2T'} \xi$$

$$\frac{\partial \phi'}{\partial t'} = b^{z-2k} \quad \varepsilon' = b^{z} \varepsilon \quad u' = b^{2\chi+z} u \quad T' = b^{\frac{z-2\chi-d}{2}} T$$

$$u' = b^{4-d} u \xrightarrow{b \to \infty} \begin{cases} \infty & d < 4 \text{ relevant} \\ 0 & d > 4 \text{ irrelevant} \end{cases}$$
For d<4, the non-linear term diverges in the large length scale b>>1
$$\downarrow$$
The mean-field theory fails!!!
Upper critical dimension in equilibrium 
$$d_{up} = 4$$

What will happen far from equilibrium?



- Introduction
- Dynamical scaling in equilibrium (review)
- Dynamical scaling under shear
- Comparison with numerics
- Summary and discussions



- Introduction
- Dynamical scaling in equilibrium (review)
- Dynamical scaling under shear
- Comparison with numerics
- Summary and discussions

### Dynamical scaling under shear

**Model** 

# Dynamical equation for non-conservative order parameter (model-A)



# Dynamical scaling under shear

Previous studies for critical phenomena in shear flow

- 1976, P.G. De Gennes: Structure factor in shear flow At the transition point:  $S(q) \sim q_x^{-2/3}$ . Much weaker than the standard OZ equation  $S(q) \sim q^{-2}$
- 2020 Nakano et al.: Simulation of O(2) model in shear

 $\rightarrow$  Observed mean-field exponents even in d=2

Previous studies suggest the shear flow reduce upper critical dimension of the model-A. However the theoretical understanding is yet to be completed. (but see Onuki&Kawasaki 1979 for RG analysis of model-H in shear)

# Dynamical scaling under shear Motivation & Main results

#### **Motivation**

- In equilibrium, the mean-field theory fails in d=2 and 3.
- Previous studies suggest that the shear flow suppress critical fluctuations.
- Here, we develop the scaling theory of model-A under shear.

#### Main results

- A new Gaussian fixed point appears under simple shear.
- Upper critical dimensions of the new Gaussian fixed point is
   d<sub>up</sub> = 2
   → The mean-field becomes exact in d=2 and 3.

# Dynamical scaling under shear Scaling argument



# **Dynamical scaling under shear**

Scaling argument

$$\frac{\partial \phi}{\partial t} + \dot{\gamma} y \frac{\partial \phi}{\partial x} = k \partial_x^2 \phi + k \nabla_{\perp}^2 \phi - \varepsilon \phi - u \phi^3 + \sqrt{2T} \xi$$
Anisotropic scaling Ansatz
$$x = b^{\zeta} x', x_{\perp} = b x'_{\perp}, t = b^{z} t', \phi(x, x_{\perp}, t) = b^{\chi} \phi'(x', x'_{\perp}, t')$$

$$b^{\chi-z} \frac{\partial \phi'}{\partial t'} + b^{1-\zeta+\chi} \dot{\gamma} y' \frac{\phi'}{x'} = b^{\chi-2\zeta} k \partial_x^2 \phi' + b^{\chi-2} k \partial_x^2 \phi' - b^{\chi} \varepsilon \phi' - b^{3\chi} u \phi'^3 + b^{-\frac{\zeta+d-1+z}{2}} \sqrt{2T} \xi'$$

$$\frac{\partial \phi'}{\partial t'} + \dot{\gamma}' y' \frac{\partial \phi'}{\partial x'} = k'_{\parallel} \partial_x^2 \phi' + k'_{\perp} \nabla_{\perp}'^2 \phi' - \varepsilon' \phi' - u' \phi'^3 + \sqrt{2T'} \xi'$$

$$\dot{\gamma}' = b^{z-\zeta+1} \dot{\gamma}$$

$$k'_{\parallel} = b^{z-2\zeta} k \quad k'_{\perp} = b^{z-2} k$$

$$\varepsilon' = b^{z} \varepsilon$$

$$u' = b^{2\chi+z} u$$

**Nonlinear term** 

 $= D^{-n}$ 

 $= D^{\circ} \mathcal{E}$ 

# Dynamical scaling under shear Stability of equilibrium fixed point

**Critical exponents in equilibrium** 

$$z = 2$$
  $\chi = \frac{2-d}{2}$   $\zeta = 1 <$ The system is isotropic



#### **Dynamical scaling under shear**

### New fixed point

**Advection** Diffusion

$$\dot{\gamma}y\frac{\partial\phi}{\partial x} \gg k_{\parallel}\partial_x^2\phi$$
 is irrelevant

We require the scale invariance of  $\dot{\gamma}$ ,  $k_{\perp}$ , T $\dot{\gamma}' = b^{z-\zeta+1}\dot{\gamma}$ ,  $k_{\perp} = b^{z-2}k$ ,  $T' = b^{\frac{z-2\chi-(d-1)-\zeta}{2}}T$ 

# Scaling relations

$$z - \zeta + 1 = 0, \ z - 2 = 0, \ \frac{z - 2\chi - (d - 1) - \zeta}{2} = 0$$

New critical exponents Anisotropic d $z = 2, \chi = -\frac{d}{2}, \zeta = 3$ 

$$k'_{\parallel} = b^{z-2\zeta}k = b^{-4}k \xrightarrow{b \to \infty} 0$$

#### **Dynamical scaling under shear**

Upper critical dimension

Now, we shall discuss the effects of the nonlinear terms

$$\frac{\partial \phi'}{\partial t'} + \dot{\gamma}' y' \frac{\partial \phi'}{\partial x'} = k'_{\parallel} \partial_{x'}^2 \phi' + k'_{\perp} \nabla_{\perp}'^2 \phi' - \varepsilon' \phi' - u' \phi'^3 + \sqrt{2T'} \xi'$$
$$\dot{\gamma}' = b^{z-\zeta+1} \dot{\gamma} \qquad k'_{\parallel} = b^{z-2\zeta} k \qquad \epsilon' = b^z \epsilon \qquad u' = b^{2\chi+z} u$$

Nonlinear term

 $7 - 2\gamma - (d - 1) - \ell$ 

Coefficient of the nonlinear term  $u' = b^{2\chi+z}u = b^{2-d}u \xrightarrow{b \to \infty} \begin{cases} 0 & d > 2 & \text{Irrelevant} \\ \infty & d < 2 & \text{Relevant} \end{cases}$ The upper critical dimension
But, the shear is ill-defined for d<2.

$$d_{\rm up} = 2$$

# **Dynamical scaling under shear** Static structure factor **Two point correlation function** $C(x_{\parallel}, \boldsymbol{x}_{\perp}, \varepsilon) \equiv \langle \phi(\boldsymbol{x}, t) \phi(\boldsymbol{0}, 0) \rangle$ **Fourier transformation** $\hat{C}(q_{\parallel}, \dot{q}_{\perp}, \varepsilon) = b^{z} \hat{C}(b^{\zeta} q_{\parallel}, b q_{\perp}, b^{z} \varepsilon)$ • $\hat{C}(0,0,\varepsilon) = b^{z}\hat{C}(0,0,b^{z}\varepsilon) \xrightarrow{b=\varepsilon^{-1/z}} \varepsilon^{-1}\hat{C}(0,0,1) \sim \varepsilon^{-1}$ • $\hat{C}(q_{\parallel},0,0) = b^{z}\hat{C}(b^{\zeta}q_{\parallel},0,0) \xrightarrow{b=q_{\parallel}^{-1/\zeta}} q_{\parallel}^{-z/\zeta}\hat{C}(1,0,0) \sim q_{\parallel}^{-2/3}$ • $\hat{C}(0,q_{\perp},0) = b^{z}\hat{C}(0,bq_{\perp},0) \xrightarrow{b=q_{\perp}^{-1}} q_{\perp}^{-z}\hat{C}(0,1,0) \sim q_{\perp}^{-2}$ $\hat{C}(q_{\parallel}, q_{\perp}, \varepsilon) = \left(c_{1}\varepsilon + c_{2}q_{\parallel}^{2/3} + c_{3}q_{\perp}^{2} + \cdots\right)^{-1}$ **Anisotropic correlation function**

DeGennes 1976



- Introduction
- Dynamical scaling in equilibrium (review)
- Dynamical scaling under shear
- Comparison with numerics
- Summary and discussions



- Introduction
- Dynamical scaling in equilibrium (review)
- Dynamical scaling under shear
- Comparison with numerics
- Summary and discussions

# Comparison with numerics Finite size scaling

$$\phi(\varepsilon, L_x, L_y) = b^{\chi} \phi(b^z \varepsilon, b^{-\zeta} L_x, b^{-1} L_y) = L_x^{\chi/\zeta} \phi(L_x^{z/\zeta} \varepsilon, 1, L_x^{-1/\zeta} L_y)$$

Scaling exponents  $z = 2, \zeta = 3, \chi = -1$ 





# Comparison with numerics Structure factor at critical point

#### Static structure factor at critical point for $\dot{\gamma} = 5.0$



#### **Comparison with numerics**

**Crossover phenomenon** 

#### Scaling behavior for crossover phenomenon



### **Comparison with numerics**

Crossover phenomenon

# Scaling function

$$S(q_x, 0) = \dot{\gamma}^{-\frac{14}{13}} \mathcal{S}(\dot{\gamma}^{-\frac{8}{13}} q_x)$$





- Introduction
- Dynamical scaling in equilibrium (review)
- Dynamical scaling under shear
- Comparison with numerics
- Summary and discussions



- Introduction
- Dynamical scaling in equilibrium (review)
- Dynamical scaling under shear
- Comparison with numerics
- Summary and discussions

### **Summary and discussions**

# Generalization for other critical phenomena



Since the dimensional dependence appears only through the volume integral, the scaling behavior of the shared system can be identified with the equilibrium model in  $d_{\text{eff}} = d + z$ 

Simple shear reduces the upper critical dimension as

$$d_{\rm up} \rightarrow \max[d_{\rm up} - z, 2]$$
 Shear is ill-defined for d<2

# **Summary and discussions**

# Generalization for other critical phenomena

|                         | Z | $d_{ m up}$ in equilibrium | $d_{ m up}$ in shear |
|-------------------------|---|----------------------------|----------------------|
| Model-A                 | 2 | 4                          | 2                    |
| Model-B                 | 4 | 4                          | 2                    |
| <b>A+A</b> →0           | 2 | 2                          | 2                    |
| <b>A+B</b> →0           | 2 | 4                          | 2                    |
| Directed<br>percolation | 2 | 4                          | 2                    |

Mean-field behaviors are expected in d=2 for various critical phenomena.



- We investigated the phi-4 model with simple shear by using the scaling analysis.
- We found a new Gaussian fixed point.
- The upper critical dimension of the new fixed point is  $d_{\rm up} = 2$ , meaning that the mean-field theory becomes exact in d=2 and 3.
- In general, the simple shear reduces the upper critical dimension as  $d_{\rm up} \to d_{\rm up}^{\rm eq} z$