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Anomalous Transport in Low-Dimensional Fluids

Key features in low-dimensional systems

p Exhibit large fluctuations due to low dimensionality.

P Leads to divergence of transport coefficients with system size (L).
L. Yang et al. Nat. Nanotechnol (2021)
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Our Research Question

L. Yang et al. Nat. Nanotechnol (2021)
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p Establishing divergence exponents (e.g., x ~ L'?)
P Understanding scaling laws and universality classes

k(Wm™' K™

Our focus: A Different Angle

p Can we define system-size-independent transport coefficients in low-dimensional systems?
p If yes, are they useful for predicting fluid flow?



Core |ldea: Wall Effects on Fluctuations and Transport

Focus: Fluid behavior near thermalized walls.

Our expectation X

Fluid Fluid

>

Transport coefficients In
bulk fluids

LS

>

_ Transport coefficients
wear the wall J
Thermalized Wall Fluid particles also tend to
(Wall particles follow canonical thermalize near the walls o
distribution at temperature) (Hydrodynamic fluctuations

(or long-time tall) are
suppressed near walls?)

Investigate fluctuating hydrodynamics near walls to verify this concept.



Goal of This Talk: The Need for Local Viscosity

Standard Prediction
System: 2D Fluid under Shear Conventional (Deterministic Hydrodynamics)

prediction

uniform shear flow

Impact of Fluctuations (Our Focus)

Our finding

Need for Local Viscosity n(x)
(where x Is distance from wall)

(" )

Main Discussion:
System-size (L) dependence of local viscosity #(x, L).
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Content In this talk

1. Discussion based on fluctuating hydrodynamics

2. Observation of microscopic particle system based on the MD simulation

3. Summary (some remarks)



Part 1.
Discussion based on fluctuating hydrodynamics



Fluctuating hydrodynamics: our model

Fluctuating hydrodynamics explains anomalous transport & divergence of transport coefficients.

Our focus: two-dimensional fluids
P density and momentum are conserved quantities (energy dynamics is ignored)

% ==V (pv) P(P) = Cpressl T \/ (%)T B \/ Cpress

pl—+@-VWw| ==Vp+n, V¥ +{,V(V - v) + VI

2d fluid
(0 (r, 1)) = 0,

<Hg}9n(l‘, I)Hziln(l”, t,)> = 2kBT5(I” — r’)5(t — ZJ) 70 (6a65bd T 5ad6bc) T (QVO - 770) 5ab6cd )



Fluctuating hydrodynamics: our model

Fluctuating hydrodynamics explains anomalous transport & divergence of transport coefficients.

ap
— ==V () pp) = Cpreep = (%
ress = — =./C
2d fluid ot ’ T <ap>T  Cores
A _
p E+(v-V)v =—Vp+n, Vv +V(V-v) +VII,

For some specific assumptions in our model:

» Pressure
The pressure follows the equation of state for an ideal gas.

» Low Mach number approximation
The sound velocity ¢, Is sufficiently large and the fluids are treated as incompressible.

The ¢, term Is neglected; we focus on only the g, term.

We focus on the dense ligquid, 10




Viscosity In Fluctuating hydrodynamic equation

Fluctuating hydrodynamics explains anomalous transport & divergence of transport coefficients.

ap
— ==V () pp) = Cpreep = (%
ress = — =./C
] ot p Cr <ap >T \/ press
S _
p E+(v V| ==Vp+n,Vv+ ¢ V(V-v) +VII,

p Key assumption of fluctuating hydrodynamics framework

Ho : system-size-independent quantity

P Fluctuating hydrodynamics derives the system-size-dependent “macroscopic” viscosity.
(characterize the overall (macroscopic) fluid dissipation)

system-size-dependent quantity
-> divergence of macroscopic viscosity

n=ny+ Ay

11



2d fluid

Kol

First main result of our study

L O

dp
=7V p(p) = Coregep - (2
r — — ) =./C
ot | press Crt <a,0>T \/ press
-V ==Vp+n,Vv+E,V(V-v) + VI,

The first main result

n, governs the fluid motions near the walls,

while n = 5, + Ay appears only in the bulk region.

12



Simulation Setup

P We consider solving fluctuating hydrodynamics numerically

ap
=7V p(p) = Crep - (2
ress = — =./C
2d fluid ; ot ’ T <ap>T \/ press
S _
A -V ==Vp+n Vv + &, V(V-v) + VI,

The sufficiently large C,. Yields nearly incompressible fluids
Fluid

We apply a common boundary condition in fluid dynamics
(vxa v}’) — (v090)

1. The VelOCity fleld at the wall Is (v, V) = (VO,O) G*7) = (pvy,0)
2. The momentum density field at the wall is (%, ;) = (pv,,0)

The fluid does not fluctuate at all at the solid walls
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System-Size dependence of Local Viscosity

P We change the system size L while fixing to the other parameters.
0.30

far from walls

32 64 [, 160

P O P

\

hear walls

-

The anomalous transport does not occur near the walls.

\




Analytical expression of velocity and local viscosity profile

P We can calculate the theoretical expression for the noise-averaged Couette flow.

iIncompressible condition V.v=0
Fluctuating - OV : i Vo 1
Navier-Stokes eq. plo Few Vv ==Vp+nVoy + Vi
Boundary condition y=0 y=
vt = () Y = v,
y=L y=L

This calculation can be done using a perturbative expansion in ¢ (the nonlinear term).

— 2
y = V(O) 1 GV(I) + € V(z) T °*°°

Several approximations were necessary to complete the calculation (the full details are omitted here)



Analytical expression of velocity profile

, VA 1 sin(2k x) -
V(X)) = yx — 62— — "
(V(x)) =7 Z T k=
}./ — 2V()/L
A . numerical factor depending on density, temperature:---
_ pokgT o _ _
A = i (within our approximation)
0

—— . = 32
-@®—- L =64
——= L = 128

(2) 0.4
For comparison, we treat A as a fitting parameter

. . 0.2 == == theory
because this calculated value can deviate from the E
true value due to the approximations made in the <> 0.0
. . ~
derivation. ~ 49

Our derived equation accurately captures the —04

k functional form of the velocity profile. - - 02




Analytical expression of local viscosity profile

2A 1
77()6) — ;70(1 + 627 Z k_ Sinz(kxx)> kx = —nn
k X

X

}./ — 2V()/L
A . numerical tfactor depending on density, temperature:---. 0.10

_ pokT 0

A= poe: (within our approximation)
0

For comparison, we treat A and y, as a fitting parameter
o i~0.116

This value is very close to the simulation value g,

7™ = 0.100

demonstrating good accuracy of this expression.




Key insight from the theoretical expression

2A 1
n(x) = ;7()(1 + 627 Z k_ sinz(kxx)) =
k X

T
. —

L
X

}./ — ZVO/L

A . numerical factor depending on density, temperature:---.

(within our approximation)

P This expression provides a key insight into the fluid's behavior

nx =0)=rn, nx=L/2) xny+ ClogL

near the solid walls INn the bulk region

-

\

Our local viscosity expression is fundamental for describing the complete flow field.

~

J
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Part 2.

Observation of microscopic particle system
based on the MD simulation

21



Strategy of MD simulation

Can we validate this boundary condition? Fluid

The fluid does not fluctuate %) = 000)
(. 77) = (pvp,0)

at all at the solid walls. N
Solid Wall

Fluctuating
Hydrodynamics

+
No-slip

Boundary Condition

)

compare

We check whether the MD simulation results can be described by fluctuating
hydrodynamics incorporating the no-slip boundary condition second main result: YES!!



Setup of MD simulation

» We perform molecular dynamics (MD) simulations. v

In MD simulations, atoms are represented as particles
that follow the classical Hamiltonian dynamics.

/ Units for the MD simulation \

dr; p; dp; oV

dt  m dt or;

> simple repulsive potential

atomic diameter o

Q atomic mass m

thermal velocity v, := \/kgT/m

V(r) = 106* tor 0 > 0

V(r) =0 for 0 < 0

(particles only repel each other when they overlap) k (or microscopic time 7 =o/v,) J

23




Implementation of solid wall

p Solid walls are implemented as a collection of particles.

1. Solid particles are trapped using an on-site potential.

Vonsi@) = Vo|sin(zg,) + sinzg)| V=50

2. Solid particles are thermalized using the Langevin
thermostat.

4; _p"
dt m
dp” OVonsite (@7 — Votey) N oV (Jri—q;])
J onsite\ { j 0€x wfllFi — g W
— = — — — -+ &1
z T Y T

3. Fluid particles interact with solid particles.

4. The motion of the walls Is simulated
by moving the solid particles (and on-site potential) collectively at a velocity v,.

24



MD simulation results
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P The local viscosity is observed in the same way as in the fluctuating hydrodynamics.

°
g° ® o00
0:$.:..:“ ..ﬁ :oo

Uy = 0.0768
Vo — 0.128

—0.06
—0.08

—0.10

—0.12

-0.14 | 0 6 5 32
0 64 T 128
Color: different wall velocities

0.52
Uy = 0.1792
Uy = 0.206

0.42

0.32

—o— gy = 0.0768

-

&

The observed viscosity decreases near solid walls, which is consistent with the behavior In

fluctuating hydrodynamics.

I — 1y = 0.128 1
ol o— vy = 0.1792 {,
' vo = 0.256 '
0 T 128
N av”
— (I (X)) = n(x)—
ox
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Changing microscopic properties of the walls

the effect of wall temperature

N\
= freeze el

N———
thermal ==

32 T 64

Freeze: Set the wall temperature to O.
Thermal: Set the wall temperature to a finite value.

Ny C

Ny C

the effect of solid-fluid interaction

rop
rop

=
=
“ < N——"
/ &N \v. YOI .
_ T 0.44
WCA interaction ~10.38
LJ interaction
hydrophilic =@ o2
hydrophobic
| 10.26
04 90 €T 128

nilic: Use attractive solid-fluid interactions (LJ).

nobic: Use only repulsive solid-fluid interactions (WCA

-

\

B The microscopic properties of walls do not affect the results at the quantitative level.

This suggests the robustness of the results of the fluctuating hydrodynamics simulations.

~
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Direct comparison between MD and FH simulation

Fluctuating hydrodynamics
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i) ) comparison
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8 0

Set the same system size, density, and
temperature to match the units of both

models.

MD (atomic system)

0.32]

—o— gy = 0.0768

Uy = 0.128
Vo — 0.1792
Uy — 0.256

[61)
o1

- V)v]

64 T

128

Use viscosity parameter %y as fitting
parameters.

— Vp + 1,V + VII,



Direct comparison between MD and FH simulation

The fluctuating hydrodynamics with
1, = 0.325 reproduces the local viscosity

n(x) of the MD simulation with high

accuracy.

f

= MD sim : V(8) = 1082 This strongly suggests that even in the
—= FHD sim:mng =0.325 atomic systems, 5, governs the fluid

0 64 T 128 motion near the walls.

The agreement between the two models is observed even at the atomic diameter scale.

28



Consistency check of best-fit viscosity parameter 1

P To validate our estimate of viscosity 5, we compare the time correlation of the momentum

density field in the bulk region in equilibrium.

1
CJJ(t) .= 5(.].(’.9 t) 'j(ra()))eq j .= Py

-

The fluctuating hydrodynamics with 5, = 0.325

reproduces the long-time tail of the MD simulation
quantitatively with high accuracy.

The agreement between the two models Is
observed even at the atomic time scale.

100

107"

10—2_

10—3_

FHD : g = 0.325, ay = 1 ——

MD : V(6) = 106* ===

—4
10702

100 /

102

29



Consistency check of best-fit viscosity parameter 2

P As another consistency test, we perform the simulation of the Poiseuille flow.

The Poiseullle flow Is realized by adding a
constant force to entire fluids and imposing
periodic boundary condition in the flow direction.

0.08

MD : V(3) = 105° \
 ~——— FHD : ny = 0.325, ay, = 1.0 '\

64 T 128

Good agreement!!

v

Fluctuating hydrodynamics describes the fluid

kmotion both near the walls and in the bulk regign




Non-tiviality of the Agreement of Poiseullle Flow

Deterministic Hydrodynamics Fluctuating Hydrodynamics
0.08 0.0%
& 0
a@ g@
0.04 0.04|
/ MD : V(§) = 106° \
0.00F 000 —— FHD : 1y = 0.325, ayy = 1.0 |

0 64 T 128
P The deterministic hydrodynamics with the viscosity observed in bulk region (3 = 0.464)

cannot reproduce the results of MD simulations.

Fluctuating hydrodynamics is necessary to describe fluids near walls (at least in low-
dimensional systems).

31



0.34

Description ability of atomic scale behaviors

Fluctuating hydrodynamics can reproduce
MD results down to the atomic scale.

| D : V(§) = 106

~—— FHD : 1y = 0.325, ayy = 1

®. P

\"

ﬂ:‘:'& A 4%’!’\-@4; -
AN FON VORI

~¢ P\g V)

sty @

Q b ﬂ‘ ‘ ! ‘(‘
SO MRt

LR VA

@ T\
\
D

%)

L )
{

{

0 64 €X

128

FHD : 1 = 0.325, a4y = 1 ~—-
MD : V(§) = 106 ==-=

—4 |
10702 100 ¢

Our results suggest that fluid description is possible at the mean-free path scale in such

dense systems.

The mean free path of our system Is
roughly a few atomic diameters.
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dp
— ==V (pv) p(p) = C, P
2d fluid ot P e on=mtAn >

_av -
dh (v-V)v_ =—Vp+n, Vv +V(V-v) +VII,

B We focus on the 2d fluids in contact with the solid walls.

We analyze the fluctuating hydrodynamic equations
/ perform the MD simulations

The first main result The second main result

Even in the atomic systems, the anomalous
transport does not occurs near the walls
and 5, governs the fluid motion near the walls.

n, governs the fluid motions near the walls,

while n = 5, + Ay appears only in the bulk region.

33



Discussion: Physical Meaning of Yy

dp
— =— V) P(p) = Cyresep - P
ress = — =./C
2d fluid ot ’ T (ap)T \/ press
A _
Ay -V ==Vp+n Vv + & V(V-v) +VII,

P 1, is independent of the system size.
P 1, describes fluid motion at the microscopic scale, on the order of a particle diameter.
P 1, characterizes microscopic dissipation, which is fundamentally different from the system-

size-dependent macroscopic dissipation. 77 =1y + An

Our proposition : 7, is the “bare” viscosity

This Is the fundamental contribution to viscosity from the purely microscopic domain.

34



Appendix
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UV cutoft length

P Changing the UV cutoff length is related to coarse-graining process.

-)

| Coarse-graining

® L ® ] <)

d,y : mesh size

36



UV cutoft length

he predictions of fluctuating hydrodynamics depend on the value of the UV cutoff length a,,.

The observed local viscosity changes by varying only
the UV cutoftf length a,, with all other parameters

iIncluding viscosity 75, fixed at the same value.

Both parameters (5,,a,,) can be used as

adjustable parameters.

37



In practice, the bare viscosity #; is determined to

0.52)

0.50

0.4

0.46

0.44

- 70.39210g ayy + 0.472

0.5 1.0 2.0 v

satisty

Mvp(X) = nra (X : 775, Ayy)

The “practical” bare viscosity n, depends on the UV

cutoff length.

If (n,,a,,) lie on this relationship, any pair will

reproduce the macroscopic phenomena
well.

38



Best value of UV cutoff length

P We investigated the best-fit bare viscosity for different UV cutoff lengths.

0.650 0.650 0.650
=&~ \D: V() = 105" == \D:V(5) =105 == \D : V(§) = 105"
fj FHD : 1y = 0.455, au = 2/3 /&? e FHD 17 = 0.510, ay, = 8/3
Sy i ?,,,:-. * ‘\\ " PN \5 ; e 4
0.555) <y’ 0.555
) \
'!‘, \I
(
0.460 _ 0.460
0 64 x 128 0 64 r 128 0 64 a1 128
ny = 0.455 for a,, =2/3 1n,=0.480 for a,, =4/3 1n,=0.510 for a,, = 8/3
Black: MD Colored: FHD By carefully choosing 7, the MD results can be

(all the same data) (with different (5. «,,)) well reproduced for any a,,.

The best value of UV cutoff length is about mean-free path length?
(in our simulations, It iIs atomic diameter) 39



Best value of UV cutoff length

. —— MD:V((S):1054 —— \ID: V(5) = 105"

5 PP = 0490, 00 =205 | TS e FHD - g = 0510, 4, = 8/3
p NN S 5’4‘,

0.555| 4 g
4 &,

[}

\

When the UV cutoff is small, it \
| describes regions where fluids \
do not actually exist. ‘

0.460— ).460) | insufficient. |
() 64 T 128 0 64 T 128

The best value of UV cutoff length is about atomic diameter!!

Y \
.
\

When the UV cutoff Is large,
the resolution near the wall is




