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Anomalous Transport in Low-Dimensional Fluids 
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of heat capacity (C) according to κ ∼ Cvl. This transition suggests 
that for ultrathin wires, the excited phonon modes must be differ-
ent from those in thicker wires. The increasing κ with temperature 
suggests that more 1D phonon modes along the molecular chain 
are continuously populated, which can occur only if the Debye 
temperature, θD, shifts to a higher value. The θD of bulk NbSe3 is 
~200 K (ref. 22), and since θ

D

∝
√
E (ref. 30), a higher θD implies an 

enhanced Young’s modulus (E), a phenomenon known as elastic 
stiffening that occurs in various nanowires31,32.

To verify our hypothesis, we measured E of individual nanow-
ires along the axial direction, that is, the b direction, using a 
three-point bending scheme with an atomic force microscope 
(AFM). E can be extracted from the force–deflection curve (Fig. 
3a) recorded during the extension and retraction process in the 
bending test (Supplementary Note 9). Figure 3b shows that for 
wires with Dh > 40 nm, E remains constant, and the average value of 
E = 86 GPa is consistent with the reported bulk value33. However, E 
increases sharply as Dh decreases below 26 nm, reaching 423 GPa for 
Dh = 8.9 nm, which represents a fivefold enhancement with respect 

to Young’s modulus of the bulk, Ebulk. Even though elastic stiffening 
has been observed in various nanowires31,32, the observed value here 
represents about threefold more E enhancement as compared to the 
up to 100% enhancement for ZnO (ref. 31) and Ag (ref. 32) nanowires.

Elastic stiffening can influence the lattice thermal conductivity 
(κl) in several ways. First, the enhanced E corresponds to a higher 
speed of sound, which is directly proportional to κl. In addition, the 
higher θD shifts the phonon spectrum to lower wave vectors at any 
given T, and enlarges the bandgap between acoustic and optical 
phonons; both contribute to a reduced Umklapp scattering rate34–36. 
These factors all help boost κl, leading to the ~25-fold κ enhance-
ment. It is a surprise, however, that so far no experimental data or 
numerical results have been reported to show the effects of elas-
tic stiffening on phonon transport. As such, we modelled the κl of 
bulk NbSe3 with different interatomic force constants by combin-
ing first-principles calculations and the Boltzmann transport equa-
tion37,38 (Supplementary Note 10). In modelling bulk NbSe3, the 
effect of phonon-boundary scattering is neglected; this is reasonable 
because in ultrathin NbSe3 wires, 1D phonons along the molecular 
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Fig. 2 | Divergent and superdiffusive transport of 1D phonons. a, Measured room temperature κ versus Dh. The grey solid line is a guide for the eyes. The 
error bars represent uncertainties calculated based on measurement errors in thermal conductance, nanowire length and cross-section (Supplementary 
Note 5). Inset: AFM scanning profile of the nanowire with Dh!=!6.8!nm. b, Normalized room temperature κ versus the normalized suspended length, which 
indicates a normal–superdiffusive transition as the wire diameter decreases. c, Measured κ values versus suspended length at different temperatures (100 
and 300!K) display a 1/3 power-law divergence. The black lines are used to connect the measured thermal conductivity data for the same sample. Note 
that the deviation from the 1/3 power law at 30!K is because at this temperature, the transport is not 1D phonon dominant. d, Temperature dependence of 
κ for different diameter wires (the suspended lengths are ~15!μm for all samples). α in the top panel is a constant. The measured κ for the thickest NbSe3 
nanowire (135!nm) demonstrates an ~T−0.27 dependence from 170 to 300!K, signifying the importance of Umklapp scattering. Thermal conductivity data for 
the three larger wires (135, 103, 61 nm) in the bottom panel are from ref. 22.
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1D Nanowires (Experimental) 
Thermal conductivity ( ) diverges κ ∼ L1/3

2D Fluids (Theoretically) 
Shear viscosity ( ) diverges η ∼ log L

Key features in low-dimensional systems 
▶ Exhibit large fluctuations due to low dimensionality. 
▶ Leads to divergence of transport coefficients with system size ( ).L
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FIG. 2. Simulation and theoretical results for the system-size dependence of observables for Couette geometry in fluctuating hydrodynamics.
Colored lines represent simulation results for di↵erent system sizes: L = 32 (purple), L = 64 (blue), and L = 128 (green). The red lines
represent theoretical results [Eqs. (17) and (20)]. The black dashed line in (c) and (e) represents the input parameter ⌘0 = 0.10. (a) Scaled
velocity profiles hvy(x)i/U as a function of the scaled position x/L. Inset: Zoomed-in view near the wall. (b) Shear stress profiles h�xy(x)i
as a function of x/L. (c) Observed viscosity profiles ⌘obs(x) as a function of x/L. (d) System-size dependence of ⌘obs in the bulk region,
calculated from Fig. (c). (e) Zoomed-in view of ⌘obs(x) near the wall as a function of position x, taken from Fig. (c). Inset: Comparison
between simulation and theory. Parameters are fixed at ⇢0 = 0.765, T = 1.0, ⌘0 = 0.10, U/L = 0.002, auv = 1.0, c

2
T
= 1000 (approximating an

incompressible fluid), and ⇣0 = 1.0. The atomic scale is used as the unit, the details of which are described in Sec. IV A.

This boundary condition assumes the complete elimination
of thermal fluctuations near the solid wall. We anticipate
that this elimination will significantly reduce the fluctuation-
induced contribution �⌘ at the boundaries. To verify this ex-
pectation, we perform numerical simulations of fluctuating
hydrodynamics [Eqs. (3), (4) and (13)-(15)]. The specific nu-
merical methods used in the fluctuating hydrodynamics simu-
lations are detailed in Appendix B.

To disentangle contributions from the bare viscosity and the
fluctuations to various physical quantities, we focus on the
distinct system-size dependence of these contributions in two-
dimensional systems. Specifically, fluctuation-induced cor-
rections diverge logarithmically with increasing system size,
whereas contributions from the bare viscosity remain system-
size-independent. Based on this, we perform a series of simu-
lations with varying system sizes L and analyze the observed
system-size dependence of physical quantities. Although our
simulations are performed at a constant shear rate U/L, the
focus is on the linear response regime, where the shear rate
becomes irrelevant to the scaling behaviors. See Appendix C
for details.

The results are summarized in Fig. 2. The atomic scale
is used as the unit, the details of which are described in
Sec. IV A. Figure 2(a) shows the scaled velocity profiles,
hvyi/U, as a function of the scaled position x/L. For an ideal
uniform shear flow predicted by the deterministic Navier-
Stokes equation, the velocity profile should exhibit a perfectly

linear dependence on x/L. However, in this figure, we observe
deviations from this ideal linear behavior, particularly near the
walls. In contrast, the shear stress profile h�xy(x)i presented in
Fig. 2(b), is spatially uniform across the entire system, which
is exactly derived from the force balance condition in Eq. (4).
In addition, a system-size dependence of h�xy(x)i is observed,
even though the velocity gradient remains approximately con-
stant at U/L.

Recall that the observed viscosity is given by

⌘obs(x) =
h�xyi

@xhvyi + @yhvxi . (16)

The spatial uniformity of the shear stress h�xy(y)i, combined
with the non-uniform velocity gradient, implies that ⌘obs(x)
exhibits a position dependence. This is clearly shown in
Fig. 2(c), which displays the overall profiles of ⌘obs(x) for
di↵erent system sizes. In the bulk region, ⌘obs(x) diverges
logarithmically with increasing system size, as depicted in
Fig. 2(d). This behavior is characteristic of anomalous trans-
port phenomena [Eq. (12)]. In contrast, near the walls,
Fig. 2(e) reveals that ⌘obs(x) is independent of system size.

Notably, the value of ⌘obs(x) at the walls is nearly identical
to ⌘0 = 0.10, the value that we chose for the bare viscos-
ity in our simulations. This observation is consistent with the
physical understanding of fluctuation-induced corrections; the
no-slip boundary condition suppresses the fluctuations intro-
duced by ⇧ran(r, t), and consequently, �⌘ should diminish as

η ∝ log L
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▶ Can we define system-size-independent transport coefficients in low-dimensional systems? 
▶ If yes, are they useful for predicting fluid flow?

Anomalous Transport Research: A Common Focus

LETTERS NATURE NANOTECHNOLOGY

of heat capacity (C) according to κ ∼ Cvl. This transition suggests 
that for ultrathin wires, the excited phonon modes must be differ-
ent from those in thicker wires. The increasing κ with temperature 
suggests that more 1D phonon modes along the molecular chain 
are continuously populated, which can occur only if the Debye 
temperature, θD, shifts to a higher value. The θD of bulk NbSe3 is 
~200 K (ref. 22), and since θ

D

∝
√
E (ref. 30), a higher θD implies an 

enhanced Young’s modulus (E), a phenomenon known as elastic 
stiffening that occurs in various nanowires31,32.

To verify our hypothesis, we measured E of individual nanow-
ires along the axial direction, that is, the b direction, using a 
three-point bending scheme with an atomic force microscope 
(AFM). E can be extracted from the force–deflection curve (Fig. 
3a) recorded during the extension and retraction process in the 
bending test (Supplementary Note 9). Figure 3b shows that for 
wires with Dh > 40 nm, E remains constant, and the average value of 
E = 86 GPa is consistent with the reported bulk value33. However, E 
increases sharply as Dh decreases below 26 nm, reaching 423 GPa for 
Dh = 8.9 nm, which represents a fivefold enhancement with respect 

to Young’s modulus of the bulk, Ebulk. Even though elastic stiffening 
has been observed in various nanowires31,32, the observed value here 
represents about threefold more E enhancement as compared to the 
up to 100% enhancement for ZnO (ref. 31) and Ag (ref. 32) nanowires.

Elastic stiffening can influence the lattice thermal conductivity 
(κl) in several ways. First, the enhanced E corresponds to a higher 
speed of sound, which is directly proportional to κl. In addition, the 
higher θD shifts the phonon spectrum to lower wave vectors at any 
given T, and enlarges the bandgap between acoustic and optical 
phonons; both contribute to a reduced Umklapp scattering rate34–36. 
These factors all help boost κl, leading to the ~25-fold κ enhance-
ment. It is a surprise, however, that so far no experimental data or 
numerical results have been reported to show the effects of elas-
tic stiffening on phonon transport. As such, we modelled the κl of 
bulk NbSe3 with different interatomic force constants by combin-
ing first-principles calculations and the Boltzmann transport equa-
tion37,38 (Supplementary Note 10). In modelling bulk NbSe3, the 
effect of phonon-boundary scattering is neglected; this is reasonable 
because in ultrathin NbSe3 wires, 1D phonons along the molecular 
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Fig. 2 | Divergent and superdiffusive transport of 1D phonons. a, Measured room temperature κ versus Dh. The grey solid line is a guide for the eyes. The 
error bars represent uncertainties calculated based on measurement errors in thermal conductance, nanowire length and cross-section (Supplementary 
Note 5). Inset: AFM scanning profile of the nanowire with Dh!=!6.8!nm. b, Normalized room temperature κ versus the normalized suspended length, which 
indicates a normal–superdiffusive transition as the wire diameter decreases. c, Measured κ values versus suspended length at different temperatures (100 
and 300!K) display a 1/3 power-law divergence. The black lines are used to connect the measured thermal conductivity data for the same sample. Note 
that the deviation from the 1/3 power law at 30!K is because at this temperature, the transport is not 1D phonon dominant. d, Temperature dependence of 
κ for different diameter wires (the suspended lengths are ~15!μm for all samples). α in the top panel is a constant. The measured κ for the thickest NbSe3 
nanowire (135!nm) demonstrates an ~T−0.27 dependence from 170 to 300!K, signifying the importance of Umklapp scattering. Thermal conductivity data for 
the three larger wires (135, 103, 61 nm) in the bottom panel are from ref. 22.
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Our Research Question

▶ Establishing divergence exponents (e.g., ) 
▶ Understanding scaling laws and universality classes

κ ∼ L1/3

Our focus: A Different Angle
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Investigate fluctuating hydrodynamics near walls to verify this concept.

Thermalized Wall 
(Wall particles follow canonical 
distribution at temperature)

Fluid particles also tend to 
thermalize near the walls 
(Hydrodynamic fluctuations 
(or long-time tail) are 
suppressed near walls?)

Transport coefficients 
near the wall

Focus: Fluid behavior near thermalized walls.

Core Idea: Wall Effects on Fluctuations and Transport

Transport coefficients in 
bulk fluids

≠

Our expectation
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Need for Local Viscosity   
(where  is distance from wall)
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FIG. 3. Measurement protocols for determining the bare viscosity ⌘0 and their validation. (a) Illustration of the method, focusing on near-
wall behavior in Couette geometry. (b) Protocol 1: Fitting the observed viscosity profile ⌘obs(x) (red line) with fluctuating hydrodynamics
simulations (black line), yielding ⌘0 = 0.325. (c) Protocol 2: Fitting ⌘obs(x) (red line) with the theoretical expression [Eq. (20)] (black
line), yielding ⌘0 = 0.304. (d) Validation using the velocity profile in Poiseuille flow. The black curve represents the prediction from
fluctuating hydrodynamics with the estimated ⌘0 = 0.325, the red line the results of the MD simulations, and the blue curve the prediction
from deterministic hydrodynamics given by Eq. (24), where the parameter ⌘ has been set to the observed viscosity ⌘obs in the bulk region. (e)
Further validation using the time correlation function of the momentum current in equilibrium. The black line is the prediction from fluctuating
hydrodynamics with the estimated ⌘0 = 0.325, and the red line the MD results. The parameters for the atomic system are V(�) = 10�2,
⇢0 = 0.765, T = 1.0, and L = 128.0. The conditions for (b) and (c) are U/L = 0.0014 in Couette geometry, and for (d) is an external force
g = 0.00002 in Poiseuille geometry.

temperature. The interactions between the wall and fluid par-
ticles are modeled by repulsive forces, mimicking a hydropho-
bic surface. Details of the specific interaction potentials and
simulation parameters are provided in Appendix E. We con-
firm in Appendix F that the results in this section are quanti-
tatively valid for other types of microscopic walls.

In the following, we set the atomic mass m, the atomic di-
ameter �, and the temperature T to 1. These serve as the
fundamental units of mass, length, and energy, respectively;
the corresponding unit of velocity is the thermal velocity of
atoms, vth :=

p
kBT/m. Note that these units are also used

when presenting the results of fluctuating hydrodynamics cal-
culations, facilitating a direct comparison between the micro-
scopic and continuum descriptions of the fluid.

B. Measurement protocol of bare viscosity

In atomic systems, we can directly observe the noise-
averaged velocity and shear stress fields, which are fundamen-
tal quantities in hydrodynamics. We can then calculate the
observed viscosity ⌘obs(x) using Eq. (10), the same formula
used in fluctuating hydrodynamics. The red line in Fig. 3(b)

shows ⌘obs(x) obtained in the MD simulations. As predicted
by fluctuating hydrodynamics, ⌘obs(x) decreases near the wall
and increases away from it.

From this behavior, we determine ⌘0 in the following
procedure.

Protocol 1

1. measure ⌘obs(x) in atomic systems

2. fit obtained ⌘obs(x) with the results of fluctuating hydro-
dynamics simulations.

To ensure dimensional consistency in the fitting, we match the
mean density ⇢0, temperature kBT , and system size L between
the two descriptions. Only ⌘0 is used as the fitting parameter.
In practice, we systematically adjust ⌘0 in increments of 0.005
and search for the ⌘0 value that best reproduces the data in the
entire region.

Figure 3(b) illustrates the result for a specific atomic sys-
tem. The best-fitted curve (black) is overlaid on the MD re-
sults (red), which demonstrate that fluctuating hydrodynamics
with the best-fit ⌘0 accurately reproduces ⌘obs(x) in the atomic

System: 2D Fluid under Shear

Goal of This Talk: The Need for Local Viscosity
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FIG. 3. Measurement protocols for determining the bare viscosity ⌘0 and their validation. (a) Illustration of the method, focusing on near-
wall behavior in Couette geometry. (b) Protocol 1: Fitting the observed viscosity profile ⌘obs(x) (red line) with fluctuating hydrodynamics
simulations (black line), yielding ⌘0 = 0.325. (c) Protocol 2: Fitting ⌘obs(x) (red line) with the theoretical expression [Eq. (20)] (black
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from deterministic hydrodynamics given by Eq. (24), where the parameter ⌘ has been set to the observed viscosity ⌘obs in the bulk region. (e)
Further validation using the time correlation function of the momentum current in equilibrium. The black line is the prediction from fluctuating
hydrodynamics with the estimated ⌘0 = 0.325, and the red line the MD results. The parameters for the atomic system are V(�) = 10�2,
⇢0 = 0.765, T = 1.0, and L = 128.0. The conditions for (b) and (c) are U/L = 0.0014 in Couette geometry, and for (d) is an external force
g = 0.00002 in Poiseuille geometry.

temperature. The interactions between the wall and fluid par-
ticles are modeled by repulsive forces, mimicking a hydropho-
bic surface. Details of the specific interaction potentials and
simulation parameters are provided in Appendix E. We con-
firm in Appendix F that the results in this section are quanti-
tatively valid for other types of microscopic walls.

In the following, we set the atomic mass m, the atomic di-
ameter �, and the temperature T to 1. These serve as the
fundamental units of mass, length, and energy, respectively;
the corresponding unit of velocity is the thermal velocity of
atoms, vth :=

p
kBT/m. Note that these units are also used

when presenting the results of fluctuating hydrodynamics cal-
culations, facilitating a direct comparison between the micro-
scopic and continuum descriptions of the fluid.

B. Measurement protocol of bare viscosity

In atomic systems, we can directly observe the noise-
averaged velocity and shear stress fields, which are fundamen-
tal quantities in hydrodynamics. We can then calculate the
observed viscosity ⌘obs(x) using Eq. (10), the same formula
used in fluctuating hydrodynamics. The red line in Fig. 3(b)

shows ⌘obs(x) obtained in the MD simulations. As predicted
by fluctuating hydrodynamics, ⌘obs(x) decreases near the wall
and increases away from it.

From this behavior, we determine ⌘0 in the following
procedure.

Protocol 1

1. measure ⌘obs(x) in atomic systems

2. fit obtained ⌘obs(x) with the results of fluctuating hydro-
dynamics simulations.

To ensure dimensional consistency in the fitting, we match the
mean density ⇢0, temperature kBT , and system size L between
the two descriptions. Only ⌘0 is used as the fitting parameter.
In practice, we systematically adjust ⌘0 in increments of 0.005
and search for the ⌘0 value that best reproduces the data in the
entire region.

Figure 3(b) illustrates the result for a specific atomic sys-
tem. The best-fitted curve (black) is overlaid on the MD re-
sults (red), which demonstrate that fluctuating hydrodynamics
with the best-fit ⌘0 accurately reproduces ⌘obs(x) in the atomic

Standard Prediction 
(Deterministic Hydrodynamics)

uniform shear flow
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by fluctuating hydrodynamics, ⌘obs(x) decreases near the wall
and increases away from it.

From this behavior, we determine ⌘0 in the following
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1. measure ⌘obs(x) in atomic systems

2. fit obtained ⌘obs(x) with the results of fluctuating hydro-
dynamics simulations.

To ensure dimensional consistency in the fitting, we match the
mean density ⇢0, temperature kBT , and system size L between
the two descriptions. Only ⌘0 is used as the fitting parameter.
In practice, we systematically adjust ⌘0 in increments of 0.005
and search for the ⌘0 value that best reproduces the data in the
entire region.

Figure 3(b) illustrates the result for a specific atomic sys-
tem. The best-fitted curve (black) is overlaid on the MD re-
sults (red), which demonstrate that fluctuating hydrodynamics
with the best-fit ⌘0 accurately reproduces ⌘obs(x) in the atomic
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FIG. 3. Measurement protocols for determining the bare viscosity ⌘0 and their validation. (a) Illustration of the method, focusing on near-
wall behavior in Couette geometry. (b) Protocol 1: Fitting the observed viscosity profile ⌘obs(x) (red line) with fluctuating hydrodynamics
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hydrodynamics with the estimated ⌘0 = 0.325, and the red line the MD results. The parameters for the atomic system are V(�) = 10�2,
⇢0 = 0.765, T = 1.0, and L = 128.0. The conditions for (b) and (c) are U/L = 0.0014 in Couette geometry, and for (d) is an external force
g = 0.00002 in Poiseuille geometry.

temperature. The interactions between the wall and fluid par-
ticles are modeled by repulsive forces, mimicking a hydropho-
bic surface. Details of the specific interaction potentials and
simulation parameters are provided in Appendix E. We con-
firm in Appendix F that the results in this section are quanti-
tatively valid for other types of microscopic walls.

In the following, we set the atomic mass m, the atomic di-
ameter �, and the temperature T to 1. These serve as the
fundamental units of mass, length, and energy, respectively;
the corresponding unit of velocity is the thermal velocity of
atoms, vth :=

p
kBT/m. Note that these units are also used

when presenting the results of fluctuating hydrodynamics cal-
culations, facilitating a direct comparison between the micro-
scopic and continuum descriptions of the fluid.

B. Measurement protocol of bare viscosity

In atomic systems, we can directly observe the noise-
averaged velocity and shear stress fields, which are fundamen-
tal quantities in hydrodynamics. We can then calculate the
observed viscosity ⌘obs(x) using Eq. (10), the same formula
used in fluctuating hydrodynamics. The red line in Fig. 3(b)

shows ⌘obs(x) obtained in the MD simulations. As predicted
by fluctuating hydrodynamics, ⌘obs(x) decreases near the wall
and increases away from it.

From this behavior, we determine ⌘0 in the following
procedure.

Protocol 1

1. measure ⌘obs(x) in atomic systems
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dynamics simulations.
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mean density ⇢0, temperature kBT , and system size L between
the two descriptions. Only ⌘0 is used as the fitting parameter.
In practice, we systematically adjust ⌘0 in increments of 0.005
and search for the ⌘0 value that best reproduces the data in the
entire region.

Figure 3(b) illustrates the result for a specific atomic sys-
tem. The best-fitted curve (black) is overlaid on the MD re-
sults (red), which demonstrate that fluctuating hydrodynamics
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used in fluctuating hydrodynamics. The red line in Fig. 3(b)

shows ⌘obs(x) obtained in the MD simulations. As predicted
by fluctuating hydrodynamics, ⌘obs(x) decreases near the wall
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From this behavior, we determine ⌘0 in the following
procedure.

Protocol 1

1. measure ⌘obs(x) in atomic systems

2. fit obtained ⌘obs(x) with the results of fluctuating hydro-
dynamics simulations.

To ensure dimensional consistency in the fitting, we match the
mean density ⇢0, temperature kBT , and system size L between
the two descriptions. Only ⌘0 is used as the fitting parameter.
In practice, we systematically adjust ⌘0 in increments of 0.005
and search for the ⌘0 value that best reproduces the data in the
entire region.

Figure 3(b) illustrates the result for a specific atomic sys-
tem. The best-fitted curve (black) is overlaid on the MD re-
sults (red), which demonstrate that fluctuating hydrodynamics
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observed viscosity ⌘obs(x) using Eq. (10), the same formula
used in fluctuating hydrodynamics. The red line in Fig. 3(b)

shows ⌘obs(x) obtained in the MD simulations. As predicted
by fluctuating hydrodynamics, ⌘obs(x) decreases near the wall
and increases away from it.

From this behavior, we determine ⌘0 in the following
procedure.

Protocol 1

1. measure ⌘obs(x) in atomic systems

2. fit obtained ⌘obs(x) with the results of fluctuating hydro-
dynamics simulations.

To ensure dimensional consistency in the fitting, we match the
mean density ⇢0, temperature kBT , and system size L between
the two descriptions. Only ⌘0 is used as the fitting parameter.
In practice, we systematically adjust ⌘0 in increments of 0.005
and search for the ⌘0 value that best reproduces the data in the
entire region.

Figure 3(b) illustrates the result for a specific atomic sys-
tem. The best-fitted curve (black) is overlaid on the MD re-
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Fluctuating hydrodynamics explains anomalous transport & divergence of transport coefficients.

Fluctuating hydrodynamics: our model

Our focus: two-dimensional fluids 
▶ density and momentum are conserved quantities (energy dynamics is ignored)

∂ρ
∂t

= − ∇ ⋅ (ρv)

ρ[ ∂v
∂t

+ (v ⋅ ∇)v] = − ∇p + η0 ∇2v + ζ0 ∇(∇ ⋅ v) +∇Πran

2d fluid

p(ρ) = Cpressρ cT := ( ∂p
∂ρ )T

= Cpress

3

accurately model fluid behavior down to the atomic scale and
also provides a path toward a more precise and unambiguous
definition of bare viscosity.

This paper is organized as follows. Section II summarizes
the modeling of fluid phenomena. Depending on the scale
of interest, di↵erent e↵ective descriptions can be employed.
We introduce an atomic description for the microscopic scale,
fluctuating hydrodynamics for the mesoscopic scale, and de-
terministic hydrodynamics for the macroscopic scale. Sec-
tion III presents numerical and theoretical analyses of the fluc-
tuating hydrodynamic equations for Couette flow under the
no-slip boundary conditions. These analyses demonstrate that
hydrodynamic fluctuations are significantly suppressed near
solid walls, and consequently, the bare viscosity directly gov-
erns the fluid dynamics in this region. Section IV proposes a
protocol for estimating the bare viscosity in atomic systems,
based on the findings of Sec. III. The validity of this protocol
is demonstrated by showing that the estimated bare viscosity
accurately describes fluid phenomena in other setups, such as
velocity profiles in Poiseuille flow and equilibrium time cor-
relation functions.

In Secs. III and IV, the UV cuto↵ length is fixed to the
atomic diameter. Section V discusses the predictive capabil-
ity of fluctuating hydrodynamics when varying the UV cut-
o↵ length, and provides remarks about the definition of bare
viscosity. We show that the phenomena can always be repro-
duced by simultaneously adjusting the UV cuto↵ length and
the viscosity included in the fluctuating hydrodynamic equa-
tions. Notably, we demonstrate that the UV cuto↵ length can
be reduced to the scale of an atomic diameter. In other words,
the lower bound of the UV cuto↵ length, which we term the
bare scale, is on the scale of the atomic diameter, and the bare
viscosity is measured at this scale. Finally, Sec. VI is devoted
to the concluding remarks.

II. OVERVIEW OF MICROSCOPIC, MESOSCOPIC, AND
MACROSCOPIC MODEL OF FLUID

Fluid phenomena can be described using various e↵ective
models, depending on the length and time scales of interest.
This section introduces the specific models employed in our
analysis: atomic-based modeling, fluctuating hydrodynamics,
and deterministic hydrodynamics.

A. Hamiltonian at the microscopic scale

At the microscopic level, fluids are regarded as a collection
of particles obeying classical mechanics. Their dynamics is
governed by the Hamiltonian:

H =

NX

i=1

p2
i

2m
+
X

(i, j)

V(|ri � r j|) , (1)

where ri and pi are the position and momentum of the i-th
particle, respectively, and m is the particle mass. The pairwise
interaction potential V(r) determines the nature of the fluid.

While our analysis is applicable to any short-ranged potential,
for simplicity, we focus on a simple repulsive soft potential of
the form:

V(r) =

8>><
>>:

k(� � r)↵ r < �,

0 r � �. (2)

Here, k is a positive constant representing the interaction
strength, � is the particle diameter, and ↵ is the exponent char-
acterizing the steepness of the repulsion.

B. Mesoscopic description based on fluctuating
hydrodynamics

At the mesoscopic level, atomic systems are described by
fluctuating hydrodynamics. This framework extends conven-
tional hydrodynamics, providing a continuum theory that de-
scribes not only the average flow but also the fluctuations aris-
ing from the thermal motions of atoms.

In this paper, we focus on a two-dimensional model where
the mass and momentum are conserved, whereas energy con-
servation is not considered for simplicity. The relevant funda-
mental equations are given by

@⇢(r, t)
@t

= �r · (⇢v), (3)

⇢

"
@v
@t
+ (v · r)v

#
= �rp + ⌘0r2v + ⇣0r(r · v) � r ·⇧ran,

(4)

where ⇢(r, t) is the density field, v(r, t) the velocity field, and
p(r, t) the pressure field. In addition, ⇧ran(r, t) represents
thermal fluctuations arising from atomic motions and is as-
sumed to be a Gaussian white noise satisfying the fluctuation-
dissipation relation:

⌦
⇧ran

ab
(r, t)
↵
= 0, (5)

⌦
⇧ran

ab
(r, t)⇧ran

cd
(r0, t0)

↵
= 2kBT�(r � r0)�(t � t

0)

⇥

⌘0 (�ac�bd + �ad�bc) + (⇣0 � ⌘0) �ab�cd

�
, (6)

where T and kB are respectively the temperature and the Bolz-
mann constant.

Equation (4) can be regarded as the Navier–Stokes equa-
tion subjected to the thermal fluctuations ⇧ran(r, t). It, there-
fore, can be expressed in the form of a continuity equation for
momentum density field j := ⇢v, allowing us to identify the
momentum flux tensor field:

⇧ab = ⇢vavb + p�ab � ⌘0

✓
@avb + @bva

◆

� (⇣0 � ⌘0)�abr · v +⇧ran
ab
. (7)

The stress tensor is defined as the force per unit area acting
on a particular plane within the fluctuating fluids. In deter-
ministic hydrodynamics, the force experienced by a fluid el-
ement at a given location r is considered in its instantaneous
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@⇢(r, t)
@t

= �r · (⇢v), (3)

⇢

"
@v
@t
+ (v · r)v

#
= �rp + ⌘0r2v + ⇣0r(r · v) � r ·⇧ran,

(4)

where ⇢(r, t) is the density field, v(r, t) the velocity field, and
p(r, t) the pressure field. In addition, ⇧ran(r, t) represents
thermal fluctuations arising from atomic motions and is as-
sumed to be a Gaussian white noise satisfying the fluctuation-
dissipation relation:

⌦
⇧ran

ab
(r, t)
↵
= 0, (5)

⌦
⇧ran

ab
(r, t)⇧ran

cd
(r0, t0)

↵
= 2kBT�(r � r0)�(t � t

0)

⇥

⌘0 (�ac�bd + �ad�bc) + (⇣0 � ⌘0) �ab�cd

�
, (6)

where T and kB are respectively the temperature and the Bolz-
mann constant.

Equation (4) can be regarded as the Navier–Stokes equa-
tion subjected to the thermal fluctuations ⇧ran(r, t). It, there-
fore, can be expressed in the form of a continuity equation for
momentum density field j := ⇢v, allowing us to identify the
momentum flux tensor field:

⇧ab = ⇢vavb + p�ab � ⌘0

✓
@avb + @bva

◆

� (⇣0 � ⌘0)�abr · v +⇧ran
ab
. (7)

The stress tensor is defined as the force per unit area acting
on a particular plane within the fluctuating fluids. In deter-
ministic hydrodynamics, the force experienced by a fluid el-
ement at a given location r is considered in its instantaneous



10

Fluctuating hydrodynamics explains anomalous transport & divergence of transport coefficients.

Fluctuating hydrodynamics: our model

∂ρ
∂t

= − ∇ ⋅ (ρv)

ρ[ ∂v
∂t

+ (v ⋅ ∇)v] = − ∇p + η0 ∇2v + ζ0 ∇(∇ ⋅ v) +∇ΠR

2d fluid
p(ρ) = Cpressρ cT := ( ∂p

∂ρ )T
= Cpress

For some specific assumptions in our model: 
▶ Pressure 
The pressure follows the equation of state for an ideal gas. 

▶ Low Mach number approximation 
The sound velocity  is sufficiently large and the fluids are treated as incompressible. 

The  term is neglected; we focus on only the  term. 

We focus on the dense liquid,

cT

ζ0 η0
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Viscosity in Fluctuating hydrodynamic equation
Fluctuating hydrodynamics explains anomalous transport & divergence of transport coefficients.

∂ρ
∂t

= − ∇ ⋅ (ρv)

ρ[ ∂v
∂t

+ (v ⋅ ∇)v] = − ∇p + η0 ∇2v + ζ0 ∇(∇ ⋅ v) +∇ΠR

p(ρ) = Cpressρ cT := ( ∂p
∂ρ )T

= Cpress

▶ Key assumption of fluctuating hydrodynamics framework

η0 : system-size-independent quantity

▶ Fluctuating hydrodynamics derives the system-size-dependent “macroscopic” viscosity.

η = η0 + Δη system-size-dependent quantity 
-> divergence of macroscopic viscosity

(characterize the overall (macroscopic) fluid dissipation)
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∂ρ
∂t

= − ∇ ⋅ (ρv)

ρ[ ∂v
∂t

+ (v ⋅ ∇)v] = − ∇p + η0 ∇2v + ζ0 ∇(∇ ⋅ v) +∇ΠR

2d fluid
p(ρ) = Cpressρ cT := ( ∂p

∂ρ )T
= Cpress

First main result of our study

η0

The first main result 

 governs the fluid motions near the walls,  

while  appears only in the bulk region.

η0

η = η0 + Δη

η = η0 + Δη
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▶ We consider solving fluctuating hydrodynamics numerically

∂ρ
∂t

= − ∇ ⋅ (ρv)

ρ[ ∂v
∂t

+ (v ⋅ ∇)v] = − ∇p + η0 ∇2v + ζ0 ∇(∇ ⋅ v) +∇ΠR

2d fluid
p(ρ) = Cpressρ cT := ( ∂p

∂ρ )T
= Cpress

The sufficiently large  yields nearly incompressible fluidsCpress

We apply a common boundary condition in fluid dynamics 

1. The velocity field at the wall is  

2. The momentum density field at the wall is 

(vx, vy) = (v0,0)

( jx, jy) = (ρv0,0)

The fluid does not fluctuate at all at the solid walls

Simulation Setup



Color: different wall velocity
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η0 = 0.1, auv = 1.0, ρ0 = 0.765, kBT = 1.0, L = 128

Inducing flow

Inducing flow

▶ We add wall velocity  of three different magnitudes.v0

(I will explain the units for physical quantities later)

v0

v0

0 64 128x

0.2

0.0

°0.2

hv
y (

x
)i

ss

0 64 128x
0.0000

0.0004

0.0012

°
h¶

x
y (

x
)i

ss

Steady-State profile of numerical simulations

Walls Velocity profile Shear stress profile

nonuniform velocity profile



The input viscosity  is observed near solid walls.η0

η0 = 0.1
ρ0 = 0.765

kBT = 1.0
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−⟨Πxy⟩ss = η(x)
∂⟨vy⟩ss

∂x

0 64 128x
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0.0

°0.2

hv
y (

x
)i

ss

0 64 128x
0.1

0.2

0.3

¥(
x
)

Velocity gradient is not spatially uniform 

Introduction of Local Viscosity

Viscosity depends on the spatial coordinate

Local viscosity
The local viscosity decreases near the solid walls

This quantity at each specific position is 
defined by using the local velocity gradient at 
that point.
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FIG. 2. Simulation and theoretical results for the system-size dependence of observables for Couette geometry in fluctuating hydrodynamics.
Colored lines represent simulation results for di↵erent system sizes: L = 32 (purple), L = 64 (blue), and L = 128 (green). The red lines
represent theoretical results [Eqs. (17) and (20)]. The black dashed line in (c) and (e) represents the input parameter ⌘0 = 0.10. (a) Scaled
velocity profiles hvy(x)i/U as a function of the scaled position x/L. Inset: Zoomed-in view near the wall. (b) Shear stress profiles h�xy(x)i
as a function of x/L. (c) Observed viscosity profiles ⌘obs(x) as a function of x/L. (d) System-size dependence of ⌘obs in the bulk region,
calculated from Fig. (c). (e) Zoomed-in view of ⌘obs(x) near the wall as a function of position x, taken from Fig. (c). Inset: Comparison
between simulation and theory. Parameters are fixed at ⇢0 = 0.765, T = 1.0, ⌘0 = 0.10, U/L = 0.002, auv = 1.0, c

2
T
= 1000 (approximating an

incompressible fluid), and ⇣0 = 1.0. The atomic scale is used as the unit, the details of which are described in Sec. IV A.

This boundary condition assumes the complete elimination
of thermal fluctuations near the solid wall. We anticipate
that this elimination will significantly reduce the fluctuation-
induced contribution �⌘ at the boundaries. To verify this ex-
pectation, we perform numerical simulations of fluctuating
hydrodynamics [Eqs. (3), (4) and (13)-(15)]. The specific nu-
merical methods used in the fluctuating hydrodynamics simu-
lations are detailed in Appendix B.

To disentangle contributions from the bare viscosity and the
fluctuations to various physical quantities, we focus on the
distinct system-size dependence of these contributions in two-
dimensional systems. Specifically, fluctuation-induced cor-
rections diverge logarithmically with increasing system size,
whereas contributions from the bare viscosity remain system-
size-independent. Based on this, we perform a series of simu-
lations with varying system sizes L and analyze the observed
system-size dependence of physical quantities. Although our
simulations are performed at a constant shear rate U/L, the
focus is on the linear response regime, where the shear rate
becomes irrelevant to the scaling behaviors. See Appendix C
for details.

The results are summarized in Fig. 2. The atomic scale
is used as the unit, the details of which are described in
Sec. IV A. Figure 2(a) shows the scaled velocity profiles,
hvyi/U, as a function of the scaled position x/L. For an ideal
uniform shear flow predicted by the deterministic Navier-
Stokes equation, the velocity profile should exhibit a perfectly

linear dependence on x/L. However, in this figure, we observe
deviations from this ideal linear behavior, particularly near the
walls. In contrast, the shear stress profile h�xy(x)i presented in
Fig. 2(b), is spatially uniform across the entire system, which
is exactly derived from the force balance condition in Eq. (4).
In addition, a system-size dependence of h�xy(x)i is observed,
even though the velocity gradient remains approximately con-
stant at U/L.

Recall that the observed viscosity is given by

⌘obs(x) =
h�xyi

@xhvyi + @yhvxi . (16)

The spatial uniformity of the shear stress h�xy(y)i, combined
with the non-uniform velocity gradient, implies that ⌘obs(x)
exhibits a position dependence. This is clearly shown in
Fig. 2(c), which displays the overall profiles of ⌘obs(x) for
di↵erent system sizes. In the bulk region, ⌘obs(x) diverges
logarithmically with increasing system size, as depicted in
Fig. 2(d). This behavior is characteristic of anomalous trans-
port phenomena [Eq. (12)]. In contrast, near the walls,
Fig. 2(e) reveals that ⌘obs(x) is independent of system size.

Notably, the value of ⌘obs(x) at the walls is nearly identical
to ⌘0 = 0.10, the value that we chose for the bare viscos-
ity in our simulations. This observation is consistent with the
physical understanding of fluctuation-induced corrections; the
no-slip boundary condition suppresses the fluctuations intro-
duced by ⇧ran(r, t), and consequently, �⌘ should diminish as

16

▶ We change the system size  while fixing to the other parameters.L

Logarithmic 
divergence

far from walls

near walls
0.0 0.5 1.0x/L

0.1

0.2

0.3

¥(
x
)

L = 32

L = 64

L = 96

L = 128

104 116 128x
0.1

0.2

0.3

¥(
x
)

L = 32

L = 64

L = 96

L = 128

Independent  
of system size

System-Size dependence of Local Viscosity

The anomalous transport does not occur near the walls.
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Analytical expression of velocity and local viscosity profile

∇ ⋅ v = 0

ρ[ ∂v
∂t

+ϵ(v ⋅ ∇)v] = − ∇p + η0 ∇2v +∇ΠR

incompressible condition

Fluctuating 
Navier-Stokes eq.

v0

v0Boundary condition
vx

y=0
= 0

vx
y=L

= 0

vy
y=0

= − v0

vy
y=L

= v0

This calculation can be done using a perturbative expansion in  (the nonlinear term). 

  
Several approximations were necessary to complete the calculation (the full details are omitted here)

ϵ

▶ We can calculate the theoretical expression for the noise-averaged Couette flow.

v = v(0) + ϵv(1) + ϵ2v(2) + ⋯
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Analytical expression of velocity profile

⟨vy(x)⟩ = ·γx − ϵ2
·γA
L ∑

kx

1
kx

sin(2kxx)
2kx

  

 : numerical factor depending on density, temperature….

·γ := 2v0/L

A

kx :=
π
L

n

A =
ρ0kBT
4η2

0
(within our approximation)
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FIG. 2. Simulation and theoretical results for the system-size dependence of observables for Couette geometry in fluctuating hydrodynamics.
Colored lines represent simulation results for di↵erent system sizes: L = 32 (purple), L = 64 (blue), and L = 128 (green). The red lines
represent theoretical results [Eqs. (17) and (20)]. The black dashed line in (c) and (e) represents the input parameter ⌘0 = 0.10. (a) Scaled
velocity profiles hvy(x)i/U as a function of the scaled position x/L. Inset: Zoomed-in view near the wall. (b) Shear stress profiles h�xy(x)i
as a function of x/L. (c) Observed viscosity profiles ⌘obs(x) as a function of x/L. (d) System-size dependence of ⌘obs in the bulk region,
calculated from Fig. (c). (e) Zoomed-in view of ⌘obs(x) near the wall as a function of position x, taken from Fig. (c). Inset: Comparison
between simulation and theory. Parameters are fixed at ⇢0 = 0.765, T = 1.0, ⌘0 = 0.10, U/L = 0.002, auv = 1.0, c

2
T
= 1000 (approximating an

incompressible fluid), and ⇣0 = 1.0. The atomic scale is used as the unit, the details of which are described in Sec. IV A.

This boundary condition assumes the complete elimination
of thermal fluctuations near the solid wall. We anticipate
that this elimination will significantly reduce the fluctuation-
induced contribution �⌘ at the boundaries. To verify this ex-
pectation, we perform numerical simulations of fluctuating
hydrodynamics [Eqs. (3), (4) and (13)-(15)]. The specific nu-
merical methods used in the fluctuating hydrodynamics simu-
lations are detailed in Appendix B.

To disentangle contributions from the bare viscosity and the
fluctuations to various physical quantities, we focus on the
distinct system-size dependence of these contributions in two-
dimensional systems. Specifically, fluctuation-induced cor-
rections diverge logarithmically with increasing system size,
whereas contributions from the bare viscosity remain system-
size-independent. Based on this, we perform a series of simu-
lations with varying system sizes L and analyze the observed
system-size dependence of physical quantities. Although our
simulations are performed at a constant shear rate U/L, the
focus is on the linear response regime, where the shear rate
becomes irrelevant to the scaling behaviors. See Appendix C
for details.

The results are summarized in Fig. 2. The atomic scale
is used as the unit, the details of which are described in
Sec. IV A. Figure 2(a) shows the scaled velocity profiles,
hvyi/U, as a function of the scaled position x/L. For an ideal
uniform shear flow predicted by the deterministic Navier-
Stokes equation, the velocity profile should exhibit a perfectly

linear dependence on x/L. However, in this figure, we observe
deviations from this ideal linear behavior, particularly near the
walls. In contrast, the shear stress profile h�xy(x)i presented in
Fig. 2(b), is spatially uniform across the entire system, which
is exactly derived from the force balance condition in Eq. (4).
In addition, a system-size dependence of h�xy(x)i is observed,
even though the velocity gradient remains approximately con-
stant at U/L.

Recall that the observed viscosity is given by

⌘obs(x) =
h�xyi

@xhvyi + @yhvxi . (16)

The spatial uniformity of the shear stress h�xy(y)i, combined
with the non-uniform velocity gradient, implies that ⌘obs(x)
exhibits a position dependence. This is clearly shown in
Fig. 2(c), which displays the overall profiles of ⌘obs(x) for
di↵erent system sizes. In the bulk region, ⌘obs(x) diverges
logarithmically with increasing system size, as depicted in
Fig. 2(d). This behavior is characteristic of anomalous trans-
port phenomena [Eq. (12)]. In contrast, near the walls,
Fig. 2(e) reveals that ⌘obs(x) is independent of system size.

Notably, the value of ⌘obs(x) at the walls is nearly identical
to ⌘0 = 0.10, the value that we chose for the bare viscos-
ity in our simulations. This observation is consistent with the
physical understanding of fluctuation-induced corrections; the
no-slip boundary condition suppresses the fluctuations intro-
duced by ⇧ran(r, t), and consequently, �⌘ should diminish as

For comparison, we treat A as a fitting parameter 
because this calculated value can deviate from the 
true value due to the approximations made in the 
derivation. 

    Our derived equation accurately captures the  
    functional form of the velocity profile.
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Analytical expression of local viscosity profile

  

 : numerical factor depending on density, temperature….

·γ := 2v0/L

A

kx :=
π
L

n

A =
ρ0kBT
4η2

0
(within our approximation)

η(x) = η0(1 + ϵ2 2A
L ∑

kx

1
kx

sin2(kxx))

ηfit
0 ≃ 0.116

This value is very close to the simulation value 
demonstrating good accuracy of this expression.

η0

ηsim
0 = 0.100

For comparison, we treat A and  as a fitting parameter η0
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Key insight from the theoretical expression

  

 : numerical factor depending on density, temperature….

·γ := 2v0/L

A

kx :=
π
L

n

A =
ρ0kBT
4η2

0
(within our approximation)

η(x) = η0(1 + ϵ2 2A
L ∑

kx

1
kx

sin2(kxx))

▶ This expression provides a key insight into the fluid's behavior

η(x = 0) = η0 η(x = L/2) ∝ η0 + C log L
near the solid walls in the bulk region

Our local viscosity expression is fundamental for describing the complete flow field.
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Part 2.  
Observation of microscopic particle system 

based on the MD simulation



Strategy of MD simulation

The fluid does not fluctuate  
at all at the solid walls.

Can we validate this boundary condition?

7
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FIG. 3. Measurement protocols for determining the bare viscosity ⌘0 and their validation. (a) Illustration of the method, focusing on near-
wall behavior in Couette geometry. (b) Protocol 1: Fitting the observed viscosity profile ⌘obs(x) (red line) with fluctuating hydrodynamics
simulations (black line), yielding ⌘0 = 0.325. (c) Protocol 2: Fitting ⌘obs(x) (red line) with the theoretical expression [Eq. (20)] (black
line), yielding ⌘0 = 0.304. (d) Validation using the velocity profile in Poiseuille flow. The black curve represents the prediction from
fluctuating hydrodynamics with the estimated ⌘0 = 0.325, the red line the results of the MD simulations, and the blue curve the prediction
from deterministic hydrodynamics given by Eq. (24), where the parameter ⌘ has been set to the observed viscosity ⌘obs in the bulk region. (e)
Further validation using the time correlation function of the momentum current in equilibrium. The black line is the prediction from fluctuating
hydrodynamics with the estimated ⌘0 = 0.325, and the red line the MD results. The parameters for the atomic system are V(�) = 10�2,
⇢0 = 0.765, T = 1.0, and L = 128.0. The conditions for (b) and (c) are U/L = 0.0014 in Couette geometry, and for (d) is an external force
g = 0.00002 in Poiseuille geometry.

temperature. The interactions between the wall and fluid par-
ticles are modeled by repulsive forces, mimicking a hydropho-
bic surface. Details of the specific interaction potentials and
simulation parameters are provided in Appendix E. We con-
firm in Appendix F that the results in this section are quanti-
tatively valid for other types of microscopic walls.

In the following, we set the atomic mass m, the atomic di-
ameter �, and the temperature T to 1. These serve as the
fundamental units of mass, length, and energy, respectively;
the corresponding unit of velocity is the thermal velocity of
atoms, vth :=

p
kBT/m. Note that these units are also used

when presenting the results of fluctuating hydrodynamics cal-
culations, facilitating a direct comparison between the micro-
scopic and continuum descriptions of the fluid.

B. Measurement protocol of bare viscosity

In atomic systems, we can directly observe the noise-
averaged velocity and shear stress fields, which are fundamen-
tal quantities in hydrodynamics. We can then calculate the
observed viscosity ⌘obs(x) using Eq. (10), the same formula
used in fluctuating hydrodynamics. The red line in Fig. 3(b)

shows ⌘obs(x) obtained in the MD simulations. As predicted
by fluctuating hydrodynamics, ⌘obs(x) decreases near the wall
and increases away from it.

From this behavior, we determine ⌘0 in the following
procedure.

Protocol 1

1. measure ⌘obs(x) in atomic systems

2. fit obtained ⌘obs(x) with the results of fluctuating hydro-
dynamics simulations.

To ensure dimensional consistency in the fitting, we match the
mean density ⇢0, temperature kBT , and system size L between
the two descriptions. Only ⌘0 is used as the fitting parameter.
In practice, we systematically adjust ⌘0 in increments of 0.005
and search for the ⌘0 value that best reproduces the data in the
entire region.

Figure 3(b) illustrates the result for a specific atomic sys-
tem. The best-fitted curve (black) is overlaid on the MD re-
sults (red), which demonstrate that fluctuating hydrodynamics
with the best-fit ⌘0 accurately reproduces ⌘obs(x) in the atomic

compare

We check whether the MD simulation results can be described by fluctuating 
hydrodynamics incorporating the no-slip boundary condition second main result: YES!!



▷ simple repulsive potential

V(r) = 10δα

V(r) = 0

for δ > 0

for δ < 0

atomic diameter          
atomic mass           

thermal velocity  

(or microscopic time )  

σ

m

vth := kBT/m

τ = σ/vth
23

▶ We perform molecular dynamics (MD) simulations.

In MD simulations, atoms are represented as particles 
that follow the classical Hamiltonian dynamics.

dpi

dt
= −

∂V
∂ri

dri

dt
=

pi

m

Units for the MD simulation

Setup of MD simulation

(particles only repel each other when they overlap)
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1. Solid particles are trapped using an on-site potential.

Vonsite(q) = V0[sin(2πqx) + sin(2πqy)] V0 = 50

10

where θ(r)はヘビサイトのステップ関数、で与えられ、二つの粒子が重なり合った分だけ斥力相互作用が働く。本シミュレーションでは m = σ = 1, k = 10に設定し、数密度 ρ = 0.765,温度 T = 1.0とする。非平衡測定の結果から計算された粘性係数は図 9上行に与えられる。繰り込まれた粘性係数の値はおおよそ η ∼ 0.45程度。
Weeks–Chandler–Andersen (WCA) potential

WCAポテンシャルはレナード・ジョーンズポテンシャルのカットオフを rc = 21/6σに設定して、斥力相互作用部分だけを残したものである。
Vff(r) = 4ϵ

[(σ
r

)12 −
(σ

r

)6
+

1
4

]
θ(21/6σ − r), (34)

本シミュレーションでは m = ϵ = σ = 1に設定し、数密度 ρ = 0.765,温度 T = 1.0とする。非平衡測定の結果から計算された粘性係数は図 9下行に与えられる。繰り込まれた粘性係数の値はおおよそ η ∼ 2.0程度で、HRポテンシャルのおよそ 4倍である。固体壁部分については、揺らぐ流体方程式の数値計算に合わせて二つのモデルを考える。壁を構成する粒子と流体を構成する粒子の間の相互作用 Vwf(r)はWCA potentialで固定する。
Vwf(r) = 4ϵ

[(σ
r

)12 −
(σ

r

)6
+

1
4

]
θ(21/6σ − r), (35)

壁を構成する粒子の位置の時間発展にバリエーションを与えることで、二つのモデルを構成する。
Frozen wall

Frozen wallは空間に固定された粒子で構成される壁である。t = 0にその格子間隔 1.0の正方格子上に粒子を配置する。Bottom wallの場合、
q j(0) = (0.5 + jx,−0.5 − jy) for jx = 0.0, 1.0 · · · , Lx − 1.0 jy = 0.0, 1.0, 2.0 (36)

で与え、Top wallの場合
q j(0) = (0.5 + jx, jy + Ly) for jx = 0.0, 1.0 · · · , Lx − 1.0 jy = 0.0, 1.0, 2.0 (37)

で与える。壁を固定する粒子は一定の速度 v0 で x軸方向に動くとして、時刻 tの座標は以下で与えられる。
qi(t) := qi(0) + v0tex (38)

粒子間の相対位置は常に固定されていることに注意。この壁は揺らぐ流体方程式で考えた Frozen wallに対応していると考えられる。
Maxwell thermal wall

Maxwell thermal wallは熱揺らぎする粒子で構成される壁である。Frozen wallと異なり、固体壁を構成する粒子は以下の Langevin方程式に従って時間発展する。
dq j

dt
=

pw

m
(39)

d pw
j

dt
= −∂Vonsite(q j − v0tex)

∂q j
−

N∑

i=1

∂Vwf
(|ri − q j|

)

∂q j
− γpw

j + ξ j(t) (40)

where Vonsite(q)は固体壁を構成する粒子の位置を固定するためのオンサイトポテンシャルである。Bottom wallの場合、
Vonsite(q) = V0

[
sin

(
2πqx

)
+ sin

(
2π(qy

)]
(41)

▶ Solid walls are implemented as a collection of particles.

2. Solid particles are thermalized using the Langevin 
thermostat.

3. Fluid particles interact with solid particles.

4. The motion of the walls is simulated  
by moving the solid particles (and on-site potential) collectively at a velocity .v0

Implementation of solid wall
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▶ The local viscosity is observed in the same way as in the fluctuating hydrodynamics.

5

FIG. 5.

stress that the fluid particles follow the Hamiltonian equation
of motion, while the thermal wall particles obey the Langevin
equation.

To compare the MD results with the fluctuating hydrody-
namic predictions, we average all the quantities within the
cells of a two-dimensional square lattice, each cell having a
size of � = 1.0. The cell size � = 1.0 serves as a spatial reso-
lution for observation and is set su�ciently small. For details
of the observation method, see the Appendix. The quantities
observed in the MD simulation are labeled with a subscript
”MD” to distinguish them from those calculated in fluctuating
hydrodynamics.

B. Behavior of fluids near walls in atomic systems

In Fig. 5, we show that the renormalization suppression
found in our hydrodynamic argument is observed in the MD
simulation. In Figs. 5 (a) and (b), we present the velocity
profile vy

MD(x) and local viscosity ⌘MD(x) in the fluid con-
fined between the thermal wall with hydrophobic interaction
[Eq. (20)]. These figures are the MD counterpart of those for
fluctuating hydrodynamics [Fig. 2 (b) and (c)], showing that
local viscosity ⌘MD(x) decreases near the walls.

Furthermore, in Figs. 5 (c) and (d), we present the local vis-
cosity ⌘MD(x) near the freeze wall with hydrophobic interac-
tion [Eq. (20)] and the thermal wall with hydrophilic interac-
tion [Eq. (21)], respectively. We can see that the microscopic
attributes of walls including the wetting properties and ther-
mal conditions exert almost no influence even at the quantita-
tive level. This observation suggests that the dependency of
local viscosity ⌘MD(x) on proximity to the walls is due to the
hydrodynamic e↵ects rather than atomic-level factors.

C. Validity of fluctuating hydrodynamic description

We here demonstrate that fluctuating hydrodynamics quan-
titatively reproduces the behavior of local viscosity ⌘MD(x) in
atomic systems, confirming the relevance of renormalization
suppression near the walls argued within fluctuating hydrody-
namics.

For the current analysis, we temporarily set the UV cuto↵
length auv = 1, intending to explore other values in the sub-
sequent section. Then, we evaluate how closely fluctuating
hydrodynamics predicts the MD results, using ⌘0 as a fitting
parameter. Operationally, by adjusting ⌘0 by 0.005 and solv-
ing Eqs. (3) and (4) numerically, we identify ⌘0 under which
fluctuating hydrodynamics best matches the MD observations.

In Fig. 6(a)-(d), we present the best-fitted results of the lo-
cal viscosity ⌘MD(x), where the accuracy of the fluctuating hy-
drodynamics is examined for four types of microscopic inter-
action between the fluid particles with the wall type fixed as
hydrophobic thermal. These figures show quite good agree-
ment between the MD results and fluctuating hydrodynam-
ics, which indicates that the prediction ability of fluctuat-
ing hydrodynamics does not depend on the details of mi-
croscopic systems if we choose the bare viscosity correctly
(with auv = 1.0 fixed). Notably, we stress that fluctuating
hydrodynamics reproduces MD results even near the walls,
demonstrating its capability for atomic-scale spatial resolu-
tion. This suggests that fluctuating hydrodynamics can be ap-
plied to smaller systems than previously assumed.

To further validate the fitting results for ⌘0, we analyze the
time correlation of momentum flux C(t) in equilibrium states.
It is defined as follows:

C(t) :=
1

2SB

Z

B
d2rh j(r, t) · j(r, 0)ieq (22)

where SB represents the area of the region B, chosen far from
the walls to minimize boundary e↵ects. Practically, the region
SB is set to [Lx/4, 3Lx/4] ⇥ [Ly/4, 3Ly/4]. In Fig.6(e), we
present typical results of C(t) obtained using the setup from
Figs.6(a) and (d). Here, CFH(t) for fluctuating hydrodynamics
is calculated with the best-fitted parameter for local viscosity
⌘MD(x). We can see that CMD(t) in the MD simulations can be
well described by fluctuating hydrodynamics with this best-
fitted parameter, independent of the details of the microscopic
models. In addition, it should be noted that the quantitative
agreement between fluctuating hydrodynamics and the MD
simulations is evident even at the atomic time scale (i.e. t ⇠
1). This is consistent with the observation that the fluctuating
hydrodynamics accurately describes the spatial modulation of
local viscosity ⌘MD(x) at the atomic scale.

In summary, the two remarkable results arise from these
analyses: (1) fitting the local viscosity ⌘MD(x) accurately de-
termines the value of ⌘0, and (2) fluctuating hydrodynamics
shows predictive accuracy at the atomic scale, extending be-
yond mesoscopic phenomena in both time and space.

Color: different wall velocities
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The observed viscosity decreases near solid walls, which is consistent with the behavior in  
fluctuating hydrodynamics.

MD simulation results
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stress that the fluid particles follow the Hamiltonian equation
of motion, while the thermal wall particles obey the Langevin
equation.

To compare the MD results with the fluctuating hydrody-
namic predictions, we average all the quantities within the
cells of a two-dimensional square lattice, each cell having a
size of � = 1.0. The cell size � = 1.0 serves as a spatial reso-
lution for observation and is set su�ciently small. For details
of the observation method, see the Appendix. The quantities
observed in the MD simulation are labeled with a subscript
”MD” to distinguish them from those calculated in fluctuating
hydrodynamics.

B. Behavior of fluids near walls in atomic systems

In Fig. 5, we show that the renormalization suppression
found in our hydrodynamic argument is observed in the MD
simulation. In Figs. 5 (a) and (b), we present the velocity
profile vy

MD(x) and local viscosity ⌘MD(x) in the fluid con-
fined between the thermal wall with hydrophobic interaction
[Eq. (20)]. These figures are the MD counterpart of those for
fluctuating hydrodynamics [Fig. 2 (b) and (c)], showing that
local viscosity ⌘MD(x) decreases near the walls.

Furthermore, in Figs. 5 (c) and (d), we present the local vis-
cosity ⌘MD(x) near the freeze wall with hydrophobic interac-
tion [Eq. (20)] and the thermal wall with hydrophilic interac-
tion [Eq. (21)], respectively. We can see that the microscopic
attributes of walls including the wetting properties and ther-
mal conditions exert almost no influence even at the quantita-
tive level. This observation suggests that the dependency of
local viscosity ⌘MD(x) on proximity to the walls is due to the
hydrodynamic e↵ects rather than atomic-level factors.

C. Validity of fluctuating hydrodynamic description

We here demonstrate that fluctuating hydrodynamics quan-
titatively reproduces the behavior of local viscosity ⌘MD(x) in
atomic systems, confirming the relevance of renormalization
suppression near the walls argued within fluctuating hydrody-
namics.

For the current analysis, we temporarily set the UV cuto↵
length auv = 1, intending to explore other values in the sub-
sequent section. Then, we evaluate how closely fluctuating
hydrodynamics predicts the MD results, using ⌘0 as a fitting
parameter. Operationally, by adjusting ⌘0 by 0.005 and solv-
ing Eqs. (3) and (4) numerically, we identify ⌘0 under which
fluctuating hydrodynamics best matches the MD observations.

In Fig. 6(a)-(d), we present the best-fitted results of the lo-
cal viscosity ⌘MD(x), where the accuracy of the fluctuating hy-
drodynamics is examined for four types of microscopic inter-
action between the fluid particles with the wall type fixed as
hydrophobic thermal. These figures show quite good agree-
ment between the MD results and fluctuating hydrodynam-
ics, which indicates that the prediction ability of fluctuat-
ing hydrodynamics does not depend on the details of mi-
croscopic systems if we choose the bare viscosity correctly
(with auv = 1.0 fixed). Notably, we stress that fluctuating
hydrodynamics reproduces MD results even near the walls,
demonstrating its capability for atomic-scale spatial resolu-
tion. This suggests that fluctuating hydrodynamics can be ap-
plied to smaller systems than previously assumed.

To further validate the fitting results for ⌘0, we analyze the
time correlation of momentum flux C(t) in equilibrium states.
It is defined as follows:

C(t) :=
1

2SB

Z

B
d2rh j(r, t) · j(r, 0)ieq (22)

where SB represents the area of the region B, chosen far from
the walls to minimize boundary e↵ects. Practically, the region
SB is set to [Lx/4, 3Lx/4] ⇥ [Ly/4, 3Ly/4]. In Fig.6(e), we
present typical results of C(t) obtained using the setup from
Figs.6(a) and (d). Here, CFH(t) for fluctuating hydrodynamics
is calculated with the best-fitted parameter for local viscosity
⌘MD(x). We can see that CMD(t) in the MD simulations can be
well described by fluctuating hydrodynamics with this best-
fitted parameter, independent of the details of the microscopic
models. In addition, it should be noted that the quantitative
agreement between fluctuating hydrodynamics and the MD
simulations is evident even at the atomic time scale (i.e. t ⇠
1). This is consistent with the observation that the fluctuating
hydrodynamics accurately describes the spatial modulation of
local viscosity ⌘MD(x) at the atomic scale.

In summary, the two remarkable results arise from these
analyses: (1) fitting the local viscosity ⌘MD(x) accurately de-
termines the value of ⌘0, and (2) fluctuating hydrodynamics
shows predictive accuracy at the atomic scale, extending be-
yond mesoscopic phenomena in both time and space.

◼ The microscopic properties of walls do not affect the results at the quantitative level.
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stress that the fluid particles follow the Hamiltonian equation
of motion, while the thermal wall particles obey the Langevin
equation.

To compare the MD results with the fluctuating hydrody-
namic predictions, we average all the quantities within the
cells of a two-dimensional square lattice, each cell having a
size of � = 1.0. The cell size � = 1.0 serves as a spatial reso-
lution for observation and is set su�ciently small. For details
of the observation method, see the Appendix. The quantities
observed in the MD simulation are labeled with a subscript
”MD” to distinguish them from those calculated in fluctuating
hydrodynamics.

B. Behavior of fluids near walls in atomic systems

In Fig. 5, we show that the renormalization suppression
found in our hydrodynamic argument is observed in the MD
simulation. In Figs. 5 (a) and (b), we present the velocity
profile vy

MD(x) and local viscosity ⌘MD(x) in the fluid con-
fined between the thermal wall with hydrophobic interaction
[Eq. (20)]. These figures are the MD counterpart of those for
fluctuating hydrodynamics [Fig. 2 (b) and (c)], showing that
local viscosity ⌘MD(x) decreases near the walls.

Furthermore, in Figs. 5 (c) and (d), we present the local vis-
cosity ⌘MD(x) near the freeze wall with hydrophobic interac-
tion [Eq. (20)] and the thermal wall with hydrophilic interac-
tion [Eq. (21)], respectively. We can see that the microscopic
attributes of walls including the wetting properties and ther-
mal conditions exert almost no influence even at the quantita-
tive level. This observation suggests that the dependency of
local viscosity ⌘MD(x) on proximity to the walls is due to the
hydrodynamic e↵ects rather than atomic-level factors.

C. Validity of fluctuating hydrodynamic description

We here demonstrate that fluctuating hydrodynamics quan-
titatively reproduces the behavior of local viscosity ⌘MD(x) in
atomic systems, confirming the relevance of renormalization
suppression near the walls argued within fluctuating hydrody-
namics.

For the current analysis, we temporarily set the UV cuto↵
length auv = 1, intending to explore other values in the sub-
sequent section. Then, we evaluate how closely fluctuating
hydrodynamics predicts the MD results, using ⌘0 as a fitting
parameter. Operationally, by adjusting ⌘0 by 0.005 and solv-
ing Eqs. (3) and (4) numerically, we identify ⌘0 under which
fluctuating hydrodynamics best matches the MD observations.

In Fig. 6(a)-(d), we present the best-fitted results of the lo-
cal viscosity ⌘MD(x), where the accuracy of the fluctuating hy-
drodynamics is examined for four types of microscopic inter-
action between the fluid particles with the wall type fixed as
hydrophobic thermal. These figures show quite good agree-
ment between the MD results and fluctuating hydrodynam-
ics, which indicates that the prediction ability of fluctuat-
ing hydrodynamics does not depend on the details of mi-
croscopic systems if we choose the bare viscosity correctly
(with auv = 1.0 fixed). Notably, we stress that fluctuating
hydrodynamics reproduces MD results even near the walls,
demonstrating its capability for atomic-scale spatial resolu-
tion. This suggests that fluctuating hydrodynamics can be ap-
plied to smaller systems than previously assumed.

To further validate the fitting results for ⌘0, we analyze the
time correlation of momentum flux C(t) in equilibrium states.
It is defined as follows:

C(t) :=
1

2SB

Z

B
d2rh j(r, t) · j(r, 0)ieq (22)

where SB represents the area of the region B, chosen far from
the walls to minimize boundary e↵ects. Practically, the region
SB is set to [Lx/4, 3Lx/4] ⇥ [Ly/4, 3Ly/4]. In Fig.6(e), we
present typical results of C(t) obtained using the setup from
Figs.6(a) and (d). Here, CFH(t) for fluctuating hydrodynamics
is calculated with the best-fitted parameter for local viscosity
⌘MD(x). We can see that CMD(t) in the MD simulations can be
well described by fluctuating hydrodynamics with this best-
fitted parameter, independent of the details of the microscopic
models. In addition, it should be noted that the quantitative
agreement between fluctuating hydrodynamics and the MD
simulations is evident even at the atomic time scale (i.e. t ⇠
1). This is consistent with the observation that the fluctuating
hydrodynamics accurately describes the spatial modulation of
local viscosity ⌘MD(x) at the atomic scale.

In summary, the two remarkable results arise from these
analyses: (1) fitting the local viscosity ⌘MD(x) accurately de-
termines the value of ⌘0, and (2) fluctuating hydrodynamics
shows predictive accuracy at the atomic scale, extending be-
yond mesoscopic phenomena in both time and space.

Freeze: Set the wall temperature to 0. 
Thermal: Set the wall temperature to a finite value.

hydrophilic: Use attractive solid-fluid interactions (LJ). 
hydrophobic: Use only repulsive solid-fluid interactions (WCA).

This suggests the robustness of the results of the fluctuating hydrodynamics simulations.

Changing microscopic properties of the walls
the effect of wall temperature the effect of solid-fluid interaction

WCA interaction
LJ interaction
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MD(atomic system)

Use viscosity parameter     as fitting 
parameters.

η0Set the same system size, density, and 
temperature to match the units of both 
models.

Fluctuating hydrodynamics

Direct comparison between MD and FH simulation 5
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stress that the fluid particles follow the Hamiltonian equation
of motion, while the thermal wall particles obey the Langevin
equation.

To compare the MD results with the fluctuating hydrody-
namic predictions, we average all the quantities within the
cells of a two-dimensional square lattice, each cell having a
size of � = 1.0. The cell size � = 1.0 serves as a spatial reso-
lution for observation and is set su�ciently small. For details
of the observation method, see the Appendix. The quantities
observed in the MD simulation are labeled with a subscript
”MD” to distinguish them from those calculated in fluctuating
hydrodynamics.

B. Behavior of fluids near walls in atomic systems

In Fig. 5, we show that the renormalization suppression
found in our hydrodynamic argument is observed in the MD
simulation. In Figs. 5 (a) and (b), we present the velocity
profile vy

MD(x) and local viscosity ⌘MD(x) in the fluid con-
fined between the thermal wall with hydrophobic interaction
[Eq. (20)]. These figures are the MD counterpart of those for
fluctuating hydrodynamics [Fig. 2 (b) and (c)], showing that
local viscosity ⌘MD(x) decreases near the walls.

Furthermore, in Figs. 5 (c) and (d), we present the local vis-
cosity ⌘MD(x) near the freeze wall with hydrophobic interac-
tion [Eq. (20)] and the thermal wall with hydrophilic interac-
tion [Eq. (21)], respectively. We can see that the microscopic
attributes of walls including the wetting properties and ther-
mal conditions exert almost no influence even at the quantita-
tive level. This observation suggests that the dependency of
local viscosity ⌘MD(x) on proximity to the walls is due to the
hydrodynamic e↵ects rather than atomic-level factors.

C. Validity of fluctuating hydrodynamic description

We here demonstrate that fluctuating hydrodynamics quan-
titatively reproduces the behavior of local viscosity ⌘MD(x) in
atomic systems, confirming the relevance of renormalization
suppression near the walls argued within fluctuating hydrody-
namics.

For the current analysis, we temporarily set the UV cuto↵
length auv = 1, intending to explore other values in the sub-
sequent section. Then, we evaluate how closely fluctuating
hydrodynamics predicts the MD results, using ⌘0 as a fitting
parameter. Operationally, by adjusting ⌘0 by 0.005 and solv-
ing Eqs. (3) and (4) numerically, we identify ⌘0 under which
fluctuating hydrodynamics best matches the MD observations.

In Fig. 6(a)-(d), we present the best-fitted results of the lo-
cal viscosity ⌘MD(x), where the accuracy of the fluctuating hy-
drodynamics is examined for four types of microscopic inter-
action between the fluid particles with the wall type fixed as
hydrophobic thermal. These figures show quite good agree-
ment between the MD results and fluctuating hydrodynam-
ics, which indicates that the prediction ability of fluctuat-
ing hydrodynamics does not depend on the details of mi-
croscopic systems if we choose the bare viscosity correctly
(with auv = 1.0 fixed). Notably, we stress that fluctuating
hydrodynamics reproduces MD results even near the walls,
demonstrating its capability for atomic-scale spatial resolu-
tion. This suggests that fluctuating hydrodynamics can be ap-
plied to smaller systems than previously assumed.

To further validate the fitting results for ⌘0, we analyze the
time correlation of momentum flux C(t) in equilibrium states.
It is defined as follows:

C(t) :=
1

2SB

Z

B
d2rh j(r, t) · j(r, 0)ieq (22)

where SB represents the area of the region B, chosen far from
the walls to minimize boundary e↵ects. Practically, the region
SB is set to [Lx/4, 3Lx/4] ⇥ [Ly/4, 3Ly/4]. In Fig.6(e), we
present typical results of C(t) obtained using the setup from
Figs.6(a) and (d). Here, CFH(t) for fluctuating hydrodynamics
is calculated with the best-fitted parameter for local viscosity
⌘MD(x). We can see that CMD(t) in the MD simulations can be
well described by fluctuating hydrodynamics with this best-
fitted parameter, independent of the details of the microscopic
models. In addition, it should be noted that the quantitative
agreement between fluctuating hydrodynamics and the MD
simulations is evident even at the atomic time scale (i.e. t ⇠
1). This is consistent with the observation that the fluctuating
hydrodynamics accurately describes the spatial modulation of
local viscosity ⌘MD(x) at the atomic scale.

In summary, the two remarkable results arise from these
analyses: (1) fitting the local viscosity ⌘MD(x) accurately de-
termines the value of ⌘0, and (2) fluctuating hydrodynamics
shows predictive accuracy at the atomic scale, extending be-
yond mesoscopic phenomena in both time and space.
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The fluctuating hydrodynamics with 
 reproduces the local viscosity 

 of the MD simulation with high 
accuracy.

η0 = 0.325

η(x)

The agreement between the two models is observed even at the atomic diameter scale.

Direct comparison between MD and FH simulation
7
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FIG. 3. Measurement protocols for determining the bare viscosity ⌘0 and their validation. (a) Illustration of the method, focusing on near-
wall behavior in Couette geometry. (b) Protocol 1: Fitting the observed viscosity profile ⌘obs(x) (red line) with fluctuating hydrodynamics
simulations (black line), yielding ⌘0 = 0.325. (c) Protocol 2: Fitting ⌘obs(x) (red line) with the theoretical expression [Eq. (20)] (black
line), yielding ⌘0 = 0.304. (d) Validation using the velocity profile in Poiseuille flow. The black curve represents the prediction from
fluctuating hydrodynamics with the estimated ⌘0 = 0.325, the red line the results of the MD simulations, and the blue curve the prediction
from deterministic hydrodynamics given by Eq. (24), where the parameter ⌘ has been set to the observed viscosity ⌘obs in the bulk region. (e)
Further validation using the time correlation function of the momentum current in equilibrium. The black line is the prediction from fluctuating
hydrodynamics with the estimated ⌘0 = 0.325, and the red line the MD results. The parameters for the atomic system are V(�) = 10�2,
⇢0 = 0.765, T = 1.0, and L = 128.0. The conditions for (b) and (c) are U/L = 0.0014 in Couette geometry, and for (d) is an external force
g = 0.00002 in Poiseuille geometry.

temperature. The interactions between the wall and fluid par-
ticles are modeled by repulsive forces, mimicking a hydropho-
bic surface. Details of the specific interaction potentials and
simulation parameters are provided in Appendix E. We con-
firm in Appendix F that the results in this section are quanti-
tatively valid for other types of microscopic walls.

In the following, we set the atomic mass m, the atomic di-
ameter �, and the temperature T to 1. These serve as the
fundamental units of mass, length, and energy, respectively;
the corresponding unit of velocity is the thermal velocity of
atoms, vth :=

p
kBT/m. Note that these units are also used

when presenting the results of fluctuating hydrodynamics cal-
culations, facilitating a direct comparison between the micro-
scopic and continuum descriptions of the fluid.

B. Measurement protocol of bare viscosity

In atomic systems, we can directly observe the noise-
averaged velocity and shear stress fields, which are fundamen-
tal quantities in hydrodynamics. We can then calculate the
observed viscosity ⌘obs(x) using Eq. (10), the same formula
used in fluctuating hydrodynamics. The red line in Fig. 3(b)

shows ⌘obs(x) obtained in the MD simulations. As predicted
by fluctuating hydrodynamics, ⌘obs(x) decreases near the wall
and increases away from it.

From this behavior, we determine ⌘0 in the following
procedure.

Protocol 1

1. measure ⌘obs(x) in atomic systems

2. fit obtained ⌘obs(x) with the results of fluctuating hydro-
dynamics simulations.

To ensure dimensional consistency in the fitting, we match the
mean density ⇢0, temperature kBT , and system size L between
the two descriptions. Only ⌘0 is used as the fitting parameter.
In practice, we systematically adjust ⌘0 in increments of 0.005
and search for the ⌘0 value that best reproduces the data in the
entire region.

Figure 3(b) illustrates the result for a specific atomic sys-
tem. The best-fitted curve (black) is overlaid on the MD re-
sults (red), which demonstrate that fluctuating hydrodynamics
with the best-fit ⌘0 accurately reproduces ⌘obs(x) in the atomic

This strongly suggests that even in the 
atomic systems,  governs the fluid 
motion near the walls.

η0
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CJJ(t) :=
1
2

⟨ j(r, t) ⋅ j(r,0)⟩eq j := ρv

The fluctuating hydrodynamics with 
reproduces the long-time tail of the MD simulation 
quantitatively with high accuracy.

η0 = 0.325

▶ To validate our estimate of viscosity , we compare the time correlation of the momentum 
density field in the bulk region in equilibrium.

η0
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CJJ(t)

FHD : ¥0 = 0.325, auv = 1

MD : V (±) = 10±2

t−1

The agreement between the two models is 
observed even at the atomic time scale.

Consistency check of best-fit viscosity parameter 1
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▶ As another consistency test, we perform the simulation of the Poiseuille flow.

f

The Poiseuille flow is realized by adding a 
constant force to entire fluids and imposing 
periodic boundary condition in the flow direction.
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MD : V (±) = 10±2

FHD : ¥0 = 0.325, auv = 1.0

                    Good agreement!! 

Fluctuating hydrodynamics describes the fluid 
motion both near the walls and in the bulk region

Consistency check of best-fit viscosity parameter 2
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▶ The deterministic hydrodynamics with the viscosity observed in bulk region ( ) 
cannot reproduce the results of MD simulations.

η = 0.464
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Fluctuating hydrodynamics is necessary to describe fluids near walls (at least in low-
dimensional systems).
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Non-tiviality of the Agreement of Poiseuille Flow
Deterministic Hydrodynamics Fluctuating Hydrodynamics
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Fluctuating hydrodynamics can reproduce 
MD results down to the atomic scale.
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The mean free path of our system is 
roughly a few atomic diameters.

Our results suggest that fluid description is possible at the mean-free path scale in such 
dense systems.

Description ability of atomic scale behaviors
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Summary

∂ρ
∂t

= − ∇ ⋅ (ρv)

ρ[ ∂v
∂t

+ (v ⋅ ∇)v] = − ∇p + η0 ∇2v + ζ0 ∇(∇ ⋅ v) +∇ΠR

2d fluid
p(ρ) = Cpressρ cT := ( ∂p

∂ρ )T
= Cpress

The first main result 

 governs the fluid motions near the walls,  
while  appears only in the bulk region.

η0

η = η0 + Δη

The second main result 

Even in the atomic systems, the anomalous 
transport does not occurs near the walls 
and  governs the fluid motion near the walls.η0

◼ We focus on the 2d fluids in contact with the solid walls. 
    We analyze the fluctuating hydrodynamic equations  
       / perform the MD simulations

η0

η = η0 + Δη
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Discussion: Physical Meaning of 

∂ρ
∂t

= − ∇ ⋅ (ρv)

ρ[ ∂v
∂t

+ (v ⋅ ∇)v] = − ∇p + η0 ∇2v + ζ0 ∇(∇ ⋅ v) +∇ΠR

2d fluid
p(ρ) = Cpressρ cT := ( ∂p

∂ρ )T
= Cpress

η0

▶  is independent of the system size. 
▶  describes fluid motion at the microscopic scale, on the order of a particle diameter. 
▶  characterizes microscopic dissipation, which is fundamentally different from the system-
size-dependent macroscopic dissipation.

η0

η0

η0

η = η0 + Δη

This is the fundamental contribution to viscosity from the purely microscopic domain.

Our proposition :  is the “bare” viscosityη0
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▶ Changing the UV cutoff length is related to coarse-graining process.

UV cutoff length

auv : mesh size



UV cutoff length
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Both parameters  can be used as 
adjustable parameters.

(η0, auv)

▶ The predictions of fluctuating hydrodynamics depend on the value of the UV cutoff length .auv

4

FIG. 4.

As presented in Figs. 4(a) and (b), the stress profile
h�xy

FH(x)i and local viscosity profile ⌘FH(x) increase as the
mesh size approaches zero. To see this increase more clearly,
in Figs. 4(c) and (d), we plot the spatial-averaged stress h�xy

FHi
and the renormalized viscosity ⌘1FH as a function of the UV
cuto↵ length auv. These quantities exhibit the logarithmic di-
vergence in the functional form

⌘1FH ⇠ � log auv, h�xy
FHi ⇠ � log auv, (16)

implying that as auv decreases towards zero, both ⌘1FH and
h�xy

FHi increase without bound. This result is consistent with
that derived from the simple perturbation theory of fluctuating
hydrodynamics.

The fact that local viscosity ⌘FH(x) approaches bare viscos-
ity ⌘0 near the walls is almost una↵ected by the value of auv. In
other words, we can always observe ⌘0 near the walls, which
implies that this phenomenon explicitly depends on both the
bare viscosity and UV cuto↵ length. Therefore, focusing on
this phenomenon would be useful for accurately identifying
both parameters that give the predictions of the real world.

III. THEORETICAL RESULTS ARE SUMMARIZED

IV. VALIDITY OF FLUCTUATING HYDRODYNAMIC
DESCRIPTION FOR ATOMIC SYSTEMS.

The argument of fluctuating hydrodynamics proceeds un-
der the assumption that thermal fluctuations are limited or ne-
glected on solid walls. We here perform the MD simulations
and demonstrate that this assumption is relevant to the atomic
systems. Furthermore, we show that fluctuating hydrodynam-
ics accurately predicts the behavior of local viscosity ⌘(x) by
setting a suitable bare viscosity ⌘0 with the UV cuto↵ length
auv fixed at 1.0. The e↵ects of varying auv are studied in the
next section.

A. Setup of the MD simulation

Within the MD simulations, fluid confinement is achieved
through parallel walls modeled as collections of particles sub-
jected to specific potentials [Fig. ]. Our study examines three
distinct wall configurations to establish the general applicabil-
ity of fluctuating hydrodynamics insights at an atomic scale.
The types of walls are distinguished based on interactions be-
tween walls and fluids and the existence/non-existence of tem-
perature: hydrophobic thermal, hydrophilic thermal, and hy-
drophobic freeze wall.

We below describe the setup of our simulations. Similar
to the simulation of fluctuating hydrodynamics, all quantities
are measured by the microscopic units, atomic diameter �,
atomic mass m, and thermal velocity vth :=

p
kBT/m. The

coincidence with the unit makes it easy to quantitatively com-
pare fluctuating hydrodynamics and the atomic systems. The
interaction between fluid particles is assumed to be simple re-
pulsive interactions

V(r) :=

8>><
>>:

K(� � r)a for r < �
0 otherwise

(17)

with K = 10.0 and � = 1.0. A variety of values of the trans-
port coe�cient are realized by changing the parameter a.

For the thermal wall, the wall particles are subjected to the
on-site potential

Vonsite
±L/2 (r) = V0

"
cos
✓
2⇡

x ± L/2
�

◆
+ cos

✓
2⇡

y ⌥ v0t/2
�

◆#
. (18)

with V0 = 50.0, and are thermalized by the Langevin ther-
mostat with temperature T = 1.0. The wall consists of three
layers of particles, each consistently trapped in the same min-
ima of the on-site potential. For the freeze wall, the on-site
potential is not implemented and instead, the relative position
of the wall particles is fixed as

q j =
✓ jx

2
� ⌥ L

2
,

jy
2
� ⌥ v0t

2

◆
(19)

with jx = 1, 2, 3 and jy = 1, 2, · · · , L/�. Both types of
walls move at the constant velocity v0 in the opposite direc-
tions, which induces the Couette flow. The wall particles in-
teract with the fluid particles through the Weeks–Chandler–
Andersen (WCA) potential

V(r) =

8>><
>>:

4✏
n��

r
�12 � ��r

�6
+ 1

4

o
for r < 21/6�

0 otherwise
(20)

for the hydrophobic case, and through the Lenard–Jones (LJ)
potential with

V(r) =

8>><
>>:

4✏
n��

r
�12 � ��r

�6o for r < 2.5�
0 otherwise

(21)

for the hydrophilic case, where ✏ is fixed to 1.0. To thermal-
ize the fluid, at least one wall must be the thermal wall. We

The observed local viscosity changes by varying only 
the UV cutoff length  with all other parameters 
including viscosity  fixed at the same value.

auv

η0
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of the fluid regardless of the value of auv. However, this result
is reasonable from the perspective of renormalization group
(RG) analysis in field theory.

Changing auv corresponds to altering the coarse-graining
scaling. For example, when auv is increased from 1 to 2, the
spatial and temporal structures existing between these scales
are smoothed out and the nonlinear coupling between small-
scale fluctuations is renormalized into the transport coe�-
cients. Then, there is the di↵erence between ⌘FH(x : ⌘0, auv =
1) and ⌘FH(x : ⌘0, auv = 2) while the base form of the equa-
tions of motion, Eqs. (3) and (4), still fundamentally describe
the dynamics of the fluid. On the other hand, the physically
observed local viscosity ⌘MD(x) in atomic systems remains
uniquely defined. Thus, as long as nonlinear interactions exist
between fluctuations, the ’physical bare viscosity’ that makes
Eq. (23) valid cannot be uniquely determined.

VI. OPERATIONAL ESTIMATION METHOD FOR BARE
VISCOSITY

We finally propose the nonequilibrium measurement
method for bare viscosity that is operational and applicable
for realistic experiments.

VII. DISCUSSIONS

A. How about in three-dimensional fluids?
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Appendix A: Numerical solver of fluctuating hydrodynamics

To solve the fluctuating hydrodynamic equations Eqs. (3),
(4), and (5) numerically, we use the staggered scheme devel-
oped in Ref. [? ? ]. Here, we explain the details of our simu-
lations.

The equations of motion that we actually solve in a two-
dimensional case are

@

@t
(⇢) = �r · j (A1)

@

@t
( ja) = �r · ( jav) � ra p(⇢)

+ ⌘0r · (rva) + ⇣0ra(r · v) + r · ⌃a (A2)
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V. NON-UNIQUENESS OF UV CUTOFF LENGTH

As mentioned in the Introduction, the application of fluc-
tuating hydrodynamics necessitates the specification of a spe-
cific set of parameters, (⌘0, auv), to return the unique results.
We here examine how predictive accuracy changes by altering
auv.

A. Relationship between physical bare viscosity and UV cuto↵
length

We apply the analysis procedure used in Sec. IV C to cases
with various UV cuto↵ lengths auv. Specifically, we fine-tune
the bare viscosity ⌘0 in increments of 0.005, while fixing auv
at specific values, to determine the conditions under which
fluctuating hydrodynamics best matches the MD results for
each auv.

In Fig. 7(a)-(e), we present the fitting results of the local
viscosity ⌘MD(x) for five di↵erent auv, where we fix the MD
simulation [V(�) = 10�4, thermal hydrophobic wall]. The
figures show that fluctuating hydrodynamic simulations using
the best-fitted ⌘0, are in excellent agreement with the MD re-
sults for all examined auv. This result is summarized by the
following equation

⌘MD(x) = ⌘FH(x : ⌘P
0 , auv) (23)

Here, We call ⌘P
0 –practically the best-fitted ⌘0– the ’physical

bare viscosity’, which enables fluctuating hydrodynamics to
provide physically observed quantities in atomic systems.

Remarkably, multiple pairs of (⌘P
0 , auv) quantitatively repro-

duce the MD results with high accuracy, although ⌘P
0 depends

on the UV cuto↵ length auv. In Fig. 5(f), we present the rela-
tionship between ⌘P

0 and auv. We find that this relationship is
well described by the equation

⌘P
0 = 0.392 log auv + 0.472. (24)

The logarithmic dependence is consistent with our previous
result [Eq. (16)]. Specifically, when the boundary e↵ects are
ignored, Eq. (23) is simplified to

⌘1MD = ⌘
1
FH(⌘0, auv). (25)

From our previous observation [Eq. (16)], we know

⌘1FH(⌘0, auv) = c1 � c2 log auv. (26)

and then we can derive the form of Eq. (24).

B. Interpretation for non-uniqueness of UV cuto↵ length in
the language of field theory

Notably, our result indicates that the parameters across a
specific scale range [auv = 2/3 ⇠ 8/3] reproduce ⌘MD(x)
in atomic systems with nearly the same high level of accu-
racy. In other words, for the practical application of fluc-
tuating hydrodynamics, only one pair from the many possi-
ble pairs, (auv, ⌘P

0 ), is necessary. This is a crucial distinction
from conventional deterministic hydrodynamics, where only
one intrinsic viscosity is considered a fundamental property

ηP
0

The “practical” bare viscosity  depends on the UV 

cutoff length.

ηP
0

If  lie on this relationship, any pair will 
reproduce the macroscopic phenomena 
well.

(η0, auv)

In practice, the bare viscosity  is determined to 

satisfy

ηP
0
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of the fluid regardless of the value of auv. However, this result
is reasonable from the perspective of renormalization group
(RG) analysis in field theory.

Changing auv corresponds to altering the coarse-graining
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▶ We investigated the best-fit bare viscosity for different UV cutoff lengths.
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of the fluid regardless of the value of auv. However, this result
is reasonable from the perspective of renormalization group
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Changing auv corresponds to altering the coarse-graining
scaling. For example, when auv is increased from 1 to 2, the
spatial and temporal structures existing between these scales
are smoothed out and the nonlinear coupling between small-
scale fluctuations is renormalized into the transport coe�-
cients. Then, there is the di↵erence between ⌘FH(x : ⌘0, auv =
1) and ⌘FH(x : ⌘0, auv = 2) while the base form of the equa-
tions of motion, Eqs. (3) and (4), still fundamentally describe
the dynamics of the fluid. On the other hand, the physically
observed local viscosity ⌘MD(x) in atomic systems remains
uniquely defined. Thus, as long as nonlinear interactions exist
between fluctuations, the ’physical bare viscosity’ that makes
Eq. (23) valid cannot be uniquely determined.
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method for bare viscosity that is operational and applicable
for realistic experiments.
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To solve the fluctuating hydrodynamic equations Eqs. (3),
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The best value of UV cutoff length is about mean-free path length? 
(in our simulations, it is atomic diameter)
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Best value of UV cutoff length

When the UV cutoff is large, 
the resolution near the wall is 
insufficient.

When the UV cutoff is small, it 
describes regions where fluids 
do not actually exist.

The best value of UV cutoff length is about atomic diameter!!


