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Speed of information propagation

* |[n closed quantum systems, the information propagation has a speed limit
due to unitary evolution T. Kuwahara, et al., PRX 10, 031010 (2020)

* The upper limit is Lieb-Robinson bound:

I[A(2), B]|| < cexp[—(dxy —vt) /]
Lieb and Robinson, Commun. Math. Phys. (1972)

A, B: local operators on different supports X and Y
The Lieb-Robinson bound indicates the locality
even in the absence of relativistic assumptions.

effective light cone



Speed of information propagation

« Spin and fermion systems (bounded local operators):

1. Short-range systems: || Ji; || <e~li=l/¢
M. B. Hastings, et al., Comm. Math. Phys. 265, 781 (2006)

|[A(t), B]|| < cexp|—(dxy —vt)/&] linear light cone

1 _ M. Foss-Feig, et al., PRL 114, 157201(2015)
4= 71" T Kuwahara, etal., PRX 10, 031010 (2020)

2. Long-range systems:||Ji;l <

T Zd;?‘;f(l’a_zm linear light cone if « = 2D + 1.

 Bosonic case:

Only short-range hopping with low-density initial states can be evaluated:
C.Yin, etal.,, PRX 12, 021039 (2022), T. Kuwahara, et al., Nat. Commun. 15, 2520 (2024).



Speed of particle transport

* On the other hand, we also focus on macroscopic particle transport, which
also represents a type of speed limit for information propagation

« Setups: bosons on the lattices:
1. long-range hopping and interactions
2. time-dependent Hamiltonians

e Criterion:
ny (1) Znx(0) + uN

X°¢: the complementary region of X
on the lattice u € (0,1]: ratio of transported particles

N: total number of bosons
T. Vu, et al., Quantum 8, 1483 (2024) -



Results in closed quantum systems

* Then how fast can the particle be transported? )\ 4 oo
» Bosonic Hamiltonian: 5 . T2 dxy
]
oy
H:Z Jw(t)bjbj—F Z hz(ni,t) §
i ZCA S
|Jii| < J /|t —j]* :symmetric long-range hopping =
with a > D (spatial dimension) l
h,(t): an arbitrary function of density operators n; OD D +1 o:

* Given a transport distance dyy, the transport time of uN bosons satisfies:

> M smin(1l,a—D)
T =2 —SUxy @: O(1) constant T. Vu, et al., Quantum 8, 1483 (2024)
Jp
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Speed of particle transport

* Up to now, the studies are restricted in closed quantum systems.

« However, the systems inevitably suffer from loss in ultracold atomic
systems: inelastic collision, chemical reaction, coupling to bath, ...
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chemical reactions of KRb molecules boson/fermion chains coupled to baths
Science 322, 231 (2008) Phys. Rev. B 32, 1846 (1985)
Science 327, 853 (2010) Rev. Mod. Phys. 86, 779 (2014)

PRL. 104, 030402 (2010)



Speed of particle transport

 When the dissipation rate is small, we can describe the dynamics of
density matrix via Lindblad equation:

dp _ . Y Tt rtr tr
—=—ilH, p| + 5; (2LipL{ — L] Lip — pL} L;)
i: lattice sites, L;: local Lindblad operators, y: dissipation rate

H. Li, et al., arXiv: 2406.08868 K. Yamamoto, etal., PRL. 127, 055301 (2021)
* Previous studies show the superfluidity and superconductivity under the
two-body loss:

* Question: What is the speed limit
for macroscopic particle transport
in open quantum systems?
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Optimal transport theory

* Motivation: transport cost of goods »

* Total cost:

E TmnCmn
m,n

T,y fraction of goods from factory n to store m
Cmn- COSt per unit of goods from factory n to store m

 L'- Wasserstein distance: S
Transport plan m,,, (joint distribution):

W(p7 Q) = min Z TmnCmn Z Tmn = Pn, Z TTmn — dm

cost matrix c,,, satisfies: Cmn 1+ Cnk Z Cmk
(triangular inequality) 10



Kantorovich-Rubinstein duality

* |f the cost matrix is symmetric: ¢,,;.,, = Cpym:

W(p,q)= max oT(p—q)

the maximum is taken for the vectors ¢ satisfying |¢.,, — ¢, < cppe.

* For a general cost matrix:
W(p,q) < max ¢ (p—q)

the maximum is taken for the vectors ¢ satisfying ¢,,, — ¢, < -

(applied in open quantum systems)
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Criterion for Transport

* For one-body loss, we can see
d
Z(ni) = =y (na) = (na)(t) = e~ (ny) (0)

if there is no Hamiltonian. Hence, the 1-norm of distribution p; = n; /N is
decreasing with time.
pll, = > P

« Criterion for transport in open quantum systems:

/
ny (7) =nxe(7)+ uN
ny( ) . particle number of Y by switching on tunneling from X to X°¢

n’ . particle number of X¢ by switching off tunneling from X to X¢

Xc
O @) QL
13




Bosonic transport in open quantum systems

* For one-body loss: L; = b;, the transport time satisfies

min(1l,a—D)

Te” 1T 2> o dXY

» The exponential decay is due to the loss effect: N; = Nge ™"

* Therefore, the current also decays due r\ /\

to the loss, leading to the deceleration O
d|SS|pat|on

of the transport process. X
Enwronment




One-body loss
—~T M min(1l,a— D)
>
. Corollaries from the result: Jp Y
1. There is an upper bound for the transportable particle numbers:
—a. — D +1
< min (‘]“"C(a . ),1)
evdxy
2. There exists a transport distance limit for bosons:
1/min(l,a— D)
4= (&)
pery

If we take u = 1/N, the limit represents the size of bosons (the farthest
distance that the bosons can reach):

(NJ(,O )1/min(1,aD)
dy =
ey
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Many-body loss

« However, for many-body loss: L; = b*, the transport time satisfies:

This exactly meets the result in closed quantum systems.
» Reason: decoherence-free subspaces H D. A. Lidar, et al., PRL 81, 2594 (1998)

pEH 2L,pLI —LIL;p— pLIL;,=0

ﬁ for an arbitrary site i
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Many-body loss

* One-body loss: does not exist nontrivial states. Lin)=0,Y|n) € H
* Many-body loss: exists!
« Examples: the ground state of Bose-Hubbard model with U — oo:
H =Y Jij(blb; +blb;) + U > ny(h; — 1)
i ] i
 Since the double-occupancy leads to an infinite increase of energy, the
ground state consists of single-occupied states.

* The existence of decoherence-free subspaces can enhance the transport
Process.

17



Sketch of proof

* The proof relies on the generalized Wasserstein distance.
Traditional Wasserstein distance: between balanced distributions.

Z Wmn:pnaz Tmn — 4dm
m n

Closed quantum systems: compare the distance between the initial and the
final distributions with the same norms: W (p, q), |p||1 = ||q||1.

* However, open quantum system leads to imbalancedness of norms

|pt]]1 < || poll1

Generalized Wasserstein distance?

18



Sketch of Proof

* Generalized Wasserstein distance:
* One-body loss:

W (pr, po) =W (pr, poe™ ")
« General cases:

T —

W(x,y) = min W(x',y")

zrx' 70y ~y, ||z [[1=]y’ |1

|x1], = [1xl], = [ly'l], = |lyll,

* The dynamics of particle number distribution: x;(t) :=

One-body loss: (¢ Z 2J;;(t) Im|tr btbzpt)]

‘7 I7E current

tr(bbips) /N

— yx;(1)

dissipation

19



Sketch of Proof

* The Wasserstein distance can be bounded by

W(e ""xp,x,) > min ¢, Z Tij > pdsy aszmm(l,a—D)

€Y, jeX
ehiex = i~ sl
W mxy,x:) < e T
—p Te” T > de;néif(la ?)

* For many-body-loss case: gbij: current flow fromj to |

j (i) d = (b*) AbI — iy (b)"b — (b)) b



Sketch of Proof

« Similarly,

W(ZB(), .’L'T) — min min E Ti7Cij
zorx' =0, x|z 1=l ]1 T S
t,J

> pdySy

* The equality holds when there exist decoherence-free subspaces.
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Gain and loss

« So far, we have only considered the lossy case. In condensed matter
physics, the coupling to baths includes both the gain effects and loss
effects:

* The master equation is given by
a=1,2

dpt 705 o Od « 18" « «
P ilpe, H Z (2L3'p ]L_Lj]LL@' pt—ptLjTLi)

1 1

* The coefficients y,(y,) are loss(gain) rates. Here we only focus on the
case with y; > y, (loss dominant).
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Gain and loss

* The dynamics of the particle number distribution:

Bi(t) = = Y 2J35(t) Imltr(blbipy)] — vz (t) + 72 [ﬂﬁé(t) + H
loss gain

* Since it contains both loss and gain, the dynamics of number distribution
without Hamiltonian is given by

—A~NT V2 —A
i = 1;(0)e Ay 1l —e =77
() = 3(0)e 7 + (1= )

* Therefore, the criterion becomes: fl?y(’r) — ch(T) > |t

23



Gain and loss

* By introducing a similar Wasserstein distance, we have

Te AT 4 RENVES L—en —Te AT ) > kEdSs Ay = 71— 72
A’)/ A’)/ — 1¥YXY

 Since the left-hand side is larger than te™"*, the transport time is
decreased by the gain effect.

* In the balanced limit: Ay — 0, the left-hand side becomes 1, which returns

back to closed quantum systems. (a) vocal particle loss (b) Local particle loss and gain
Lattice @ : ‘ ;:
: /LA 711\
Wsanimnasisy f/_—/_;%_‘;;\ﬁ\,\ o
TG A Ee
ATV L T e T

. H H
——0— —0—0—0—0— 9



Gain and loss

Te i = (Ay — o /N)~1
e Corollaries from the result:

1. The upper bound for transportable particle number: N := N/|A]

JoClao —a. — D +1)

aE
dXY

,ugmin(

ﬂ M : Y2
B(TC),l) B(t) ::{ (Avy)2t =+ (AY)2 if N> A~

g N <2
The dense limit is nothing different from the one-body-loss case.

However, for the dilute limit we have
B(r.) = 12N~ /(Ay)? = o

, Indicating there is no upper bound by enlarging the lattice.
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Gain and loss

2. Size of bosons:
d = (NJpl(a —a. — D +1)B(r.))"/

In the dilute limit, the size becomes
d; = (’7’2|A|J90C(05 —a: — D+ 1))1/%
(Av)?
The farthest transport distance can be also determined by lattice sites.
« Reason: decoherence-free subspace:

@[t (2
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Conclusion and Outlook

» Construct optimal transport theory in open quantum systems
 Derive the lower bound for transport time t for dissipative cases

« Show the upper bound for transportable particle number and transport
distance limit

« Show that the decoherence-free subspace enhances the transport
(no transport distance or particle number limit, enhance the transport)

28



Conclusion and Outlook

Possible topics in the future:

 probability of observing particles beyond dy, when the time is less than
the lower bound

e microscopic transport theory

 Lieb-Robinson bound for long-range systems
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