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Homogeneous and isotropic turbulence 1/28

e Simulation of forced
Navier-Stokes equations in a
periodic cube

du+ (u-V)u=—-Vp+vViu+ f,
V-u=0

e Statistically steady,
) homogeneous and isotropic
SRR 1Y turbulence
Velocity field and iso-surface of |w|?
(Rey = 210)




Orientational order in turbulence 2/28

e Scaling laws in turbulence
Moments of the velocity increments exhibit universal scaling laws
such as Kolmogorov 2/3 law

<{[U(w +r,t) —u(x,t)] - |:_|}2> _ 23,203

* Vorticity alignment (Ashurst, Kernstein, Kerr and Gibson 1987)
The vorticity vector w = V x u tends to align with a certain direction.



Vorticity alignment: rate-of-strain tensor 3/28
e The equations of the vorticity w(z,t) = V x u(x, t)

Ow+ (u-Vw = (w-V)u+vViw+Vx f.

¢ Rate-of-strain tensor S .

S,'j = 5 ((%Uj + 8J’UJZ)
e With S, the vorticity equations become
Oswi + wpBpw; = Sipwy + vOaw; + (V x Fs.

e S can be diagonalized at each « and ¢

A 0 0
S=P 1[0 XN O0]P
0 0 M3

Here)\1+>\2+)\3:OduetOV'U:O.



Vorticity alignment 4128

* Rate-of-strain tensor S;; = (d;u; + d;u;)/2 can be diagonalized at each x
and ¢

Here \{ + Xy + A3 =0dueto V-u = 0.

e Letusset A\ > X > A3 (A > 0and \; <0).
Let e;, e, and e; be the associated eigenvectors (principal axes of S).

* Vorticity alignment (Ashurst et al. 1987)
- The vorticity w(z, t) tends to align with e, (x, t) in turbulence.

- e, : the eigenvector of the intermediate eigenvalue )\, of S
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Vorticity alignment: discovery in simulation 5/28

e Probability density function of

A ‘ w(x,t

S cost = exant) -
all i = 3 (smallest, negative) )

3; I e; : eigenvector of the largest eigenvalue \; > 0

2; es : eigenvector of the intermediate eigenvalue 2

15 L~ ’/// 1 es3 : eigenvector of the smallest eigenvalue A3 < 0

o.; =

* Most probably cosf, =1 (6, = 0)

0 01 02 03 04 05 06 07 08 09 1

;- @] w prefers to be aligned with e,.
Re) =130 * The PDFs are same for higher Reynolds
numbers

(Buaria, Bodenschatz & Pumir 2020).



Vorticity alignment: remarks 6/28

e The vorticity alignment with e,
- Spontaneous orientational order in turbulence
“This result was unexpected by the statistical physics community,

but had been anticipated by vortex models such as Tennekes (1968),
Lundgren (1982) and Vieillefosse (1982, 1984).“

quoted from Schumacher, Kerr & Horiuti (2013).
— The vorticity magnitude is not maximally amplified

jw!?

jwl?

8t2

=wSw +vw - Viw+w- (V x f).

Or, the nonlinearity is depleted (e.g., Constantin 1994).

e Why the alignment with e, dominates has not been answered.



Outline 7/28

e Why the alignment of w with e, dominates has not been answered
(Schumacher, Kerr & Horiuti 2013).

* Outline of this talk
We study
(1) the alignment with local spherical coordinates spanned by e,’s,

(2) a dynamical model for the alignment
(evolution of the angle between w and e,),



Local strain coordinates 8/28

* Eigenvalues of the rate-of-strain tensor S(z, t)
A=A > Mg
Here trS =\ + X+ X3 =0(\; > 0and \; <0)
* The corresponding eigenvectors e, e, and es.

e, = x’ axis, e, = 2/ axis, e; =y axis

T e~ o The vorticity is then written as
m/% wsinf cos ¢
@2 Crax w= | wsinfsing

Local strain coordinates w cos §

0<fd<wm/2and —7/2 < o < 7/2.

* Calculate PDF P(0, ) from simulation data!
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PDF P(6, ¢) from simulation 9/28
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Local strain coordinates Probability to find the direction of w : P(0, ¢) sin §dodp
(Rey = 210)



PDF P (6, ) from simulation 10/28
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Contours of P(6, o) with peak at (., ¢.) ~ (0.0357,0)

Local strain coordinates (Rey = 210)




Observation on PDF P(0, ) 11/28
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* PDF P(0, ¢)
- Symmetric with respect to the ¢ axis

- The peak is at
(6., ¢.) ~ (0.0357,0) = (6.3°,0°)

e Implications
- The vorticity does not have
the e;-component on average.

- 6, may not be zero.



* P(6, ) does not depend on the Reynolds number
at least in 100 < Ry < 200.

* The peak (6., ¢.) ~ (0.0357,0) = (6.3°,0°) does not either.
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e Outline of this talk
We study
(1) the alignment with local spherical coordinates spanned by e,’s,

(2) a dynamical model for the alignment
(evolution of the angle between w and e,),



Evolution of polar angle 6(¢) 14/28
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Can one model evolution of the polar angle 4(¢) in
the local strain coordinates?

Let us assume ¢ = 0 for simplicity.
Then, the vorticity is written as

(w(t) sin Q(t))
w(t) = 0
w(t) cos O(t)

tan (t) =

Observe that

Can we model evolution of w(t), e;(t) and ey(t)?



Model of evolution of polar angle 0(t) 15/28

e The model we develop is

d9 [2()\1 = )\2) —+ w] [2()\1 = )\2) = w]

- in 260
a 80 — M) e
d
d—L: = w(A; sin? 6 + g cos? 6),
d)\l 1 OJ2
- = g(_gﬁ + A3+ A3) + ﬁ(?,cos2 0 —2),
d/\2 1 w2 .
== g(Af —2X3+A3) + E(3s.m2 0—2),
dds 1 .5 1 2, W

(cf. Viellefosse 1982; Majda 1991).

e We assume ¢ = 0 and ignore the viscosity and the forcing.



Sketch of derivation of the model 16/28
e f+at)
@r({*ﬁt) Jo [’C t5t) z
e, 2/ * Ottentn
) 8 ,
(w(t& /J J & teat)
/ 1 Sw
o
@, )
Ow+ (u-Vw = Sw+2V0, w = Sw,
S+ (u-V)S =-82-02— (VR V)p++v3, L1]5 =-5-9-(VoVv
2 |W|2 2 |‘-‘*’|2
V<p = —SijSij + T Vp = —SijSij P T



Evolution of the vorticity 17/28

* Lagrangian evolution of the vorticity in the local
strain coordinates

A 0 0 wsin @ Awsin @
w~Sw=[0 X3 0 0 = 0
0 0 X wcos 6 Aaw cos 6

Therefore

(1+ AtA))wsinf

w(t 4+ At) = ( 0 ) +O(A#?),
(1 + AtAg)wcosf

dw

Fri w(Aq sin” 6 4 Ay cos? )



Evolution of the rate-of-strain tensor 18/28

* Lagrangian evolution of the rate-of-strain tensor S
in the local strain coordinates

S~-82-Q2— (Ve V)p

* () (anti-symmetric part of the velocity gradient tensor) is

1 0 Wy —Wy 1 0 wcos 6 0
Q= 3 — Wy 0 Wy | = 3 —wcosf 0 wsin @
Wy —Wg 0 0 —wsin @ 0
* The pressure Hessian is here modeled as an identity-matrix form
using v2p = —5;;5;; + |w|?/2 = tr[(V ® V)p]

1 2 2 2 w? 100
(V@V)pwg —)\1—)\2—)\34-? 0 1 0
0 0 1

(Vieillefosse 1982).



Evolution of the rate-of-strain tensor 19/28
* The rate-of-strain S(¢t + At) is given as

S(t+ At)
/\1+At[%(—2/\§+)\2+/\§)+%(bnoszo—z)} 0 —At< cos0sin0
~ o A3+A:[%(A%+A2~2/\§)+%] 0 +o(ar?).
—ate? cos0sin0 0 Ao + At {%(A%—N+A§)+§—§(35m29—2)}

» We then solve the eigenvalue problem of S(¢ + At).
The largest eigenvalue and eigenvector are

AL(t+ At) = % {Al(t) + X () + At(a + ¢) + VM) — Ma(t) + At(a — )2 + 4At2b2} :

A1 (t+ At) — Ao (t) — Atc)

e (t+ At) || 0
—Atb

where a = (-2 + A3 + \3) + %;(30052 0—2),b= —%2 cosfsinb,
c= 102 - 2)2 + %) + £ (3sin?6 — 2)



Evolution of the rate-of-strain tensor 20/28
e The intermediate eigenvalue and eigenvector are

Dot 4 A8) = = I (8) + Aa(t) + At(a+ ¢) — vVPal) = M) % Abla— ] + AALR ),
2

—Atb
ex(t+ At) || ( 0 )
Al(t) Sl Ata — )\2(75 SIS At)

» The smallest eigenvalue \;(t + At) and eigenvector e;(t + At) are

1 2
As(t 4+ At) = Az + At [B(A% + 22 —2X2) + % +O(A?),

0
es(t+ At) || (1)
0

where a = $(-222 4+ 22+ 23 + “1’%(30052 0—2),b= 7%2 cos 0sin 6,

e= 102 — 2)2 + X3) + ¥ (3sin? 6 — 2)



Evolution of the eigenvalues and the polar angle 22
* The expressions of \;(t + At) yield

d)\l 1 w2
g:g(_2)€+>\3+)\§)+E(SCOSQQ_Q)’
dy, 1 2

=2 =3 -2+ W) + 5 (3sin’ 0 - 2),
dAs 1 .5 o g, W

* For the polar angle 6(t + At)
w(t + At) - ey (t + At)

_ 200 = d) + w204 — Ag) — o]
= tanf + At 00— %) tan @ + O(At?).
Therefore
dé _ [2(A1 = A2) + w][2(A1 — A2) — w] sin 26.

dt 8(A1 — A2)



Summary of the model 22/28
» The model (ODEs)

((i;: w(Ag sin® 6 4 Ay cos? 6),

% = %( 207 + A3+ A3) + ﬁ(3cos 6—2),
% = %(/\ —2X3 +A3) + —(3sm 6—2),
jf [2(A )\2)8—2—;;][ ()\)\21) A2) —u] sin 26.

A== - >X>N)

Lagrangian evolution

We assumed the azimuthal angle o(t) = 0 (the PDF is symmetric).
We ignored the viscosity and the forcing.

Off-diagonal components of the pressure Hessian were ignored
[Restricted Euler equation (Vieillefosse 1982)].



Numerical simulation of the model 23/28
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* The model ()\; is erased)

%“: = w(\1 sin2 0 + Ao cos? 0),

d)\l 1 2 2 (A)Q 2

——= = Z[-(\1 = A2)® + 373 + —(3cos® 6 — 2),
— 3[ (A1 = A2)" +3X3] + 12( cos )
d)\g 1 2 2 (JJ2 2

2 iy = 3A1] + 5 (3sin6 —2),
G i S elE e s A E Te(ssin )
do [2(A1 — A2) + w][2(A1 — A2) — ) sin 20
dt 8()\1_)\2) .

e |nitial values are taken from DNS
(by imposing |¢| < 0.017).

* Forlarget, 6(t) — 0 or w/2. w(t)and \(¢) seem diverge.

* Some trajectories show plateau of 4(t) close to 6 = 0.



Equilibrium point of the model 24/28

* The model ()\; is erased)
((11—0; =w(A1 sin?  + Ay cos? 0),
L 232 4 Y (300826 —
s 3[ (A1 — A2)” +373] + o (3cos® 0 —2),
d)\g 1 2 2 w2 2
lateart — = == — - _
plateau = 3[ (A1 —X2)” +3X1] + 9 (3sin“ 0 — 2),
2 0

0 0. 0.4 0.6 0.8 1 1.2 de [2()\1 — )\2) + UJ] [Q(Al — AQ) — (l.)]
/Ty, =

— = sin 260.
dt 8()\1 — )\2)

e The model has an equilibrium point,
020, w:2)\1, )\2:0

(No equilibrium point with § = 7/2)

e Does the plateau correspond to meandering around this equilibrium
point?



Plateau and the equilibrium of the model 25/28

7-‘—/2 1 1 1 1 L 25
20 |
3m/8 -
S
S
= =
= w/4 5 10
.
5 5|
/8
0
plateau Xa(t)
=5 L
0 02 04 06 08 1 1.2 0 01 02 03 04 05 06 07
t/ Ty t/TL

* In the plateau, the equilibrium condition of the model
9:0, w:2)\1, )\2:0

is roughly satisfied.
e The plateau is a long stay around the equilibrium point.



Insight from the model 26/28

* The model (ODEs)

dw 2 2

— =w(A71 sin” 6 + Ag cos” ),

dt

dx 1 D D B O 2

—— = —(=2A7 + A5 +2A3) + —(3cos” 0 — 2),
- 3( 1+t +A3) 12( )
dXo
dt

46 _ [20n = Ag) +wl2(M —A2) —w]
dt 8(A1 — A2)

A3 =—A1 — A2 (A1 > A2 > Ag)
- The polar angle # = 0 corresponds to the vorticity alignment with e..
- There are long transient states around the equilibrium point,

1 w?
= E(Af —222 +23) + E(i&sinzﬁ —2),

=0, w=2\, X=0 (1)

* Insight from the model
The vorticity alignment with e, corresponds to meandering around
an equilibrium like Eq.(1).



Check with Navier-Stokes simulation data 27/28

* Insight form the model: § = 0,w =2\, A2 =0

20| N * Scatter plot of DNS grid data

o o, L satisfying the alignment w(zx, t) || ex(x, )
- least square fit: jw(x,t)| = 2.23\;(x, 1)
- Not always |\s(x, t)| < A\ (z,t)

|w(z, 1)]

Hitw = 2.230 — |
- L w=2\ * For 3D scatter plot (A1, )\, and |w|)

0 10 20)\](93’”30 40 50 least sq. ﬁt:

Data conditioned with || < 0.017 jw(z, )] = 2.23)\ (2, 1) + 0.0473)z(, 1)

and 6 < 0.057 (Rey = 210)

* The insight carries over to turbulence data!
|w(x, )] =~ 2\ (x, 1)



Problem of the model 27/28

/2 I I I 0 L 1000

100

(
w(t) or (1)

10 ¢

T T T 1 L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2

t/TL t/TL
0(t) — m/2 w(t) and X\, (t) seem to diverge

* For large t, w(t) and \,(t) becomes too large (blows up).
(as expected, Veillefosse 1982, 1984)

* The model does not yield a statistically steady state.
* The fixed point (f = 0,w = 2\, A\, = 0) is neutrally stable.



Summary 28/28

The preferential alignment (PA) of the vorticity, w || e..
e-: the eigenvector of the intermediate eigenvalue ), of the rate-of-strain tensor S.

(1) Analyzed PA in the spherical local strain coordinates
- the PDF peak is (6, ) ~ (0.0357,0).
(2) A dynamical-system model of the angles
- PA corresponds to the neutral fixed point of the model.

The model does not yield a statistically steady state.

We developed the two-angle model similiary, but leading to a similar
blowup.

Better modeling of the pressure Hessian and the viscous term is
needed (many proposals are available including stochastic noises).

In the Navier-Stokes turbulence, suppression of the growth of the
vorticity due to the pressure is an active subject.



