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Quantum Gravity and Information
In Expanding Universe



dS/CFT correspondence and
Information



Toward “dS/CFT”

* Analytic continuation from AdS/CFT correspondence

v Higher spin dS/CFT correspondence

[Anninos, Hartman, Strominger, 2011], [Gim Seng Ng, Strominger, 2012], ...
[Das, Das, Jevicki, Ye, 2012], ...

v dSs/CFT, based based on Wy minimal model

[Hikida, Nishioka, Takayanagi, Taki, 2021, 2022], [Chen, Chen, Hikida, 2022], ...
[Chen, Hikida, Taki, Uetoko, 2024]

X Worldline Observer

[Anninos, Hartnoll and Hofman, 2011], ..., [Witten, 2023], [Loganayagam, Shetye, 2023], ...
[Anninos, Galante, Maneerat, 2024], ...

* Cosmological correlator

[McFadden, Skenderis, 2011], [Mata, Raju, Trivedi, 2012], [Arkani-Hamed, Maldacena, 2015], ...

[Arkani-Hamed, Baumann, Lee, Pimentel, 2018], [Jain, Kundu, Kundu, Mehta, Sake, 2022], ...




Old Story about dS/CFT

* Higher spin dS/CFT correspondence

[Anninos, Hartman, Strominger, 2011], [Gim Seng Ng, Strominger, 2012], [Das, Das, Jevicki, Ye, 2012], ...

Higher spin gravity \ Higher spin gravity
in AdS,

in dS4

3D O(2N) Vector

3D Sp(2N) Vector

Model / Model

* Analytic continuation: N — — N
* The matching of correlation functions follows from AdS/CFT.

* Geometric interpretation is obscure.

v e.g. Where is the boundary?




Sp(2N) Model

1
S = EJddx 0"y, 0,y
* called as "symplectic fermion” or "anti-commuting scalar’

* In the old time, there have been many works as an exotic field theory.
(e.g. negative central charge, Logarithmic CFT)

Curiosities at ¢ = —2
[Kausch,1995], [Gaberdiel, Kausch, 1999], [Kausch,2000], Horst G. Kausch?
[LeClair, Neubert, 2007], [Robinson, Kapit, LeClair, 2009]... Department of Applied Mothematics and Theorctical Plysics,

University of Cambridge, Silver Street,
Cambridge CB3 9EW, U.K.

20 October 1995

* This is a higher-derivative theory

v Usual fermion (anti-commuting field): single-derivative

v Symplectic fermion: two-derivative




Higher-derivative Theory

* Ostrogradsky Instability

v The Lagrangian with higher-(time-)derivatives has larger Hilbert space than
we often expect.
1 1 €
eg. L= Exz — Exz — Exz
v "Usually’, Hamiltonian of the higher-derivative theory is unbounded from
below.

fa, —ala,

e.g. H=a, )

* This instability is also involved with
v Non-normalizable vacuum
v Negative norm state etc

* One might be able to avoid one of them by some “trick”. But one cannot evade all
of them.




Is it TRUE in general?



Is it TRUE in general?

What about symplectic Fermion?



Is it TRUE in general?

What about symplectic Fermion?

Review: Higher-derivative fermion



OUTLINE

l.  Fermionic Higher-derivative Toy Mode|
Il.  "Higher-derivative” Theory from Field Redefinition

I1l. 2D Symplectic Fermion

IV. Implication to a-vacua




Fermionic Higher-derivative Toy Model



TT-deformed Fermionic Theories Revisited

Kyungsun Lee, Piljin. Yi and JY
arXiv: 2104.09529

Kyungsun Lee Piljin Yi
KIAS KIAS




Quantum Mechanical Toy Model

* Consider additional term to the (0+1)-dim free fermion

i — . i = — = .
L = SV = Sy myy — Ay

v the extra term is the same as kinetic term of boson

* From Lagrangian, the conjugate momentum can be obtained:

— —
5L i . - SL i

7T=<_—=§l//—/h/f 7T=_>—.=—?//—ﬂl//
S i

v Y can be expressed in terms of canonical variables!

| L(_ . | i
= —— |7+ — = —— |7 ——
=77 T V=77 V

v No constraint = No elimination of D.o.F. : Fermion “Doubling”
{ly,w,n,n}



Quantization

* Quantization: Canonical anti-commutation relation

T+ %l/_/ = i(cosh 0b + sinh 6¢) T — él// = — i(cosh @b + sinh Oc¢)

W = — i(sinh @b + cosh 6¢) T+ él[/ = i(sinh @b + cosh fc)

(w,ny =i {@al=—i s (b,b) =1 {c,e}=—1

v 0 :(real) parameter for Bogoliubov transformation
generated by G = i(bc + bc)
v Cannot avoid minus sign in RHS of {¢,¢} = — 1

[\_)lN.

71'_

* Hamiltonian becomes

1 _ 1 1 _
H =— (meze - I sinh? 9) bb — (meze - I cosh? 9) cC — (mezg - ; cosh @ sinh 0) (bc -+ Eb)




Q: Does this Hamiltonian
is Hermitian?

1 _ 1
H =— (me29 + n sinh? 9) bb — <me29 + n cosh? 9) cc

1 _
+ <me29 +—-cosh@sinh 9) (bc + ¢b)



If you have two students,

Hamiltonian Lagrangian
H = 20 11’126 l_?b 20 1 h29_ i_. i'_ - =
=— | me +Ism — | me +ICOS cc L = EWV/_EWW‘F’/’@WW—AWW
+<mew+%cosh9 sinh@) (bc + ¢b) Z= dedwe_fngL

H,=(a|H|b) In Fock space



If you have two students,

Hamiltonian
_1=2mA—+/1+4m?*2?
o 2)
I
By =— real for all m, 4
1= 2mA+V/1+4m?A?
e 2)

Lagrangian
1 —+/1+4mi
2= 2
{ . can be complex
E, = - for some m, A
1 +4/1+4mi
E4 —




Q: Does this Hamiltonian
is Hermitian?

1 _ 1
H =— (me29 + n sinh? @) bb — <me29 + " cosh? 9) cc

29 1 . 7 —
+| me™ +—cosh fsinh 0 (bc + ¢b)
It you answer the Hamiltonian is Hermitian,

then you would think the result of IS correct




Negative Norm State

* From anti-commutation relation
{b,b} =1 {c,c} =—1
the norm of the excited state ¢'|0) is
(0]¢2|0) = - (0]0) - <0W9/= ~(0]0)
v/ Either the vacuum or ¢ | 0) has negative norm!

* This is similar to Ostrogradsky instability for higher derivative theory.




Is this model pathological?



Too Early to conclude
because




Resolution of Negative Norm

* Define J operator: unitary and Hermitian J'=J"1=J
J =" JeJ =—c¢ JbJ = b
JeJ =—¢ JbJ = b
[LeClair, Neubert, 2007], [Robinson, Kapit, LeClair, 2009]

c.f) (—=Df in SUSY

* Define J-inner product
(O), =(JO)

* J-inner product is positive-definite

210)| = (0lee10) = = (0] c]0) = (0]0)







Relation to Path Integral

* You might think that the J-norm is an artificial ad hoc modification to
save the theory.

v We showed that the J-norm (not the “ordinary” norm) follows
from the path integral formalism.

* The connection between operator formalism and path integral
formalism can be found by inserting the completeness relation into
the transition amplitude. e.g. (7|e™"" | ;)

v/ Completeness relation: 1=10)(0] —¢|0){0]|c+ -
= [0)0| +¢&|0Y0]|c J+ -

v/ forexample, wu e :J pyDy 5 at finite temperature
w(0)=—w(p)w0)=—y(p)




No



Energy Spectrum

* |If you define a model by Lagrangian, the correct operator formalism
of the model should use J-norm. It is not a choice.

* There are two ways to get the energy spectrum:

v With Fock state |a), diagonalize the matrix am , = (a|H|b),
cf) biorthogonal basis [1308.2609] [quant-ph/0306040], -

v Find energy eigenstates directly without bra state H|E) = E|E)

1)
(‘ . B 1 —+/1+4mA
* Theresultof #& iscorrect. %=73;
Lagrangian Es

+1/1+4mA

22

1
)
1

E, =




Wait a second....
Could the energy be complex?

E1=

1 —+/1+4mAi
2 = 2)

1 when 4dmi < —1 7
E3:_

A

1 +4/1+4mAi




J-Hermitian Adjoint

* With new J-inner product, we should define new J-Hermitian adjoint.

O =J0O'] sothat (D|OY),=( O ®|¥),

* Then, the Hermiticity of an operator should be defined with
J-Hermitian adjoint.

An operator O is J-Hermitian iff O7/ = ©




Bi-orthogonal State

* Instead of inserting the operator J in the inner product, it is more

convenient to define new bra state by using J-Hermitian adjoint.
(double-bracket notation)

@) = 0]0) =|®) — (@|=(0]OV

v The overlaps of double-bracket bra and ket states gives the J-
inner product.

(@|O]F) = (@[O]|Y),

v Use double-bracket, and forget the insertion of J




Q: Does this Hamiltonian
is Hermitian?

1 _ 1
H =— (me29 + n sinh? 9) bb — <me29 + n cosh? 9) cc

1 _
+ <me29 +—-cosh@sinh 9) (bc + ¢b)



Q: Does this Hamiltonian

J-Hermitian?

1 _ 1
H =— (me29 + n sinh? 9) bb — <me29 + n cosh? 9) cc

20 l :
+ | me“¥ + 7 cosh @ sinh 0

No



Wait a second....
Could the energy be complex?

E1=
1 —+/1+4mAi
2 = 2)
1 when 4dmi < —17
E3:_
A
1 +4/1+4mAi
E4=

Since Hamiltonian is not J-Hermitian,

it is not surprising to have complex energy.



When do we have real spectrum?

* For a special value of 8, the Hamiltonian becomes J-Hermitian.

* This special value exists

only when4mAd > — 1 ?

- identical to the condition for

real energy spectrum.

1 F4/1+4mi -2
Eyy = 27 \\ ]
4




As A goes to O....

i . _ -
L = YV =Sy mypy — AWy
i i .
G 51/71/'/—51/71//+ myy : ordinary free fermion
as A — 0

* The small A expansion of the Hamiltonian

CcC

1—\/1+4mz% 1 +4/1 + 4mi
- 24 24

H

G

1
<— m + m?) + ---)b*b -~ <7 +m—m?l+ --->cTc

divergesas 4 — 0O

Decoupled!!




We are exploring more higher-

derivative theories.
(See Mehta’s poster)

Xavier Bekaert Abhishek Mehta
University of Tours APCTP = Kyung Hee University



“Higher-derivative” Theory
from Field Redefinition



One section in the paper, “TT deformation of
A = (1,1) off-shell supersymmetry and partially
broken supersymmetry”

Kyungsun Lee and JY
arXiv: 2306.08030

Kyungsun Lee
KIAS



Equivalence Theorem in Path Integral

* In the path integral, the physics (or, specifically, physical observables
ike S-matrix, correlation functions) should not depends on the field
redefinition.

Field Redefinition;. ¢ —> ¢@[D]

J@qﬁ eS J@d) % oS |#1@)




“Higher-derivative” Theory from Free Theory

X Let us consider a free scalar field
1
L —_ 56M¢aﬂ¢

* Under a field redefinition ¢ = 0°®, the Lagrangian has higher-
derivatives

1 2 2
L = = =(0,0°®)(0'0°®)

* According to the equivalence theorem in QFT, it should describe the
free scalar field theory.




Does this free theory have
Ostrogradsky instability?

1 2 2
L = = —(9,0°0)(0"0°®)



Does this free theory have
Ostrogradsky instability?

1 2 2
L = = —(9,0°0)(0"0°®)

No.

Probably most of you know the answer
because it is an old problem.



Going back to Free Fermion

* (0+1)-dim Free Complex Fermion

L =—iyy+ mpy
X Let's take field redefinition

1
S|

W = n+iin 74

v Then we have

l l . .




What is wrong with this
field redefinition?




Comparison of Phase Space

* Comparison of Phase space

=— Wy + myy

[ Constraints j

7 =0 n+iy =0

[ Phase Space j

l//,l/_/,ﬂ',ﬁ'




Comparison of Phase Space

* Comparison of Phase space

L =— iyy + myry

[ Constraints j

7 =0 n+iy =0

[ Phase Space j

b




Comparison of Phase Space

* Comparison of Phase space

i [ . :
_ L = (5 - iﬁm)ﬁﬁ - Eﬁn + Ay + mny

[ Constraints j

7 =0 n+iy =0

[ Phase Space j

b




Comparison of Phase Space

* Comparison of Phase space

[ [ . :
_ L = (5 - iﬁm)ﬁﬁ - Eﬁn + Ay + mny

[ Constraints j

( No constraint j

7 =0 n+iy =0

[ Phase Spacej [ Phase Space j

b

n,n,mw,




Resolution of this problem

P | is[ore]

D e — | DD
) ) 0D |

Jacobian
as path integral measure



Jacobian in Path Integral

* Jacobian from the change of variable in the integration
d
y = ylx] [dyf[y] = [dx d—)yc JIylx]]

* Jacobian should be taken into account in the field redefinition of
path integral




BRST Symmetry

[Slavnov, 1990]

jﬂ ir . D
'L O = O[g] [ch ,=SI®] _ [Dgo 3% ¢~SIlg]] -y =il JDWe Sl = [ﬁ
r o
_ 0D . 9
L, .= L[®[p]]+ b_dga b : (fermi) ghost - Ly =Ll + ya—:/y - boson

| op = €b |
ob = 0
_ oS
ob = —e—
oD
) _ L




Back to Free Fermion

* Full Lagrangian including exponentiated Jacobian
L = iimin — inn + g + mijn + y(1 + iAd)y
* BRST Symmetry
on = €y 6y = e( — iij + mij) 5 = 6y = 0
v/ BRST charge: Q =-— (iAmij+ i77)y

* The same Lagrangian can be obtained by another field redefinition

from free fermion: yw = 1 and @ = i — iA# (up to total derivative)
v The corresponding BRST symmetry:

5ii = &7 oy =—¢é(—in—mn) oy =67 =0
v/ BRST charge: QO = y(iAmn — 1)




Similar Canonical Quantization

* Conjugate momentum
SL SL

7T=—=l/1m77]+/177] ﬁ=T=—iﬂ+/1ﬁ
on on
oL _ oL .
[1=— =ily [1=— =0 :2ndclass constraints
oy oy

* Canonical (anti-)commutation relation
: _ . 1
{n,m} =i {n,m} =—1 lv.7] = n from Dirac bracket

v Transformation to Oscillators (with Bogoliubov parameter 6)

{b,b} =1 {c,c} =—1 [a,a] = 1




Hamiltonian

* Hamiltonian and BRST charge (for a specific 6)

(for all value of m and 4, one can always find @ € R.)

_ 1 1
H =—mbb +—cc — —ada
A A

Q_,(l—m/1>%_ Q__,(l—m/l)
= | p ca = — | p

v/ Hamiltonian can be expressed as

| —

ac

H =—mbb + : {0,0}

1 —mAi




Q: Is O and O Hermitian
conjugate to each other?

Hermitian conjugate?

H Qz—i(l_/lm/1>%dc

0 .<l—m/1>i_
= 1 2ca
A




Q2: Hamiltonian is bounded from
below or above?

H =—mbb + —cc —I&a
VS

1
H =—mbb+~———(0.0)




Recall:
Need J-Hermitian conjugation

{c,c} =—1
(®|OY),=( 0" ®|¥),

Ol = Jo']



A1:0 is NOT J-Hermitian
conjugate to Q, but...

0 .<1—m/l>i_ o .<1—m/1>i_
= 1 2ca = —1 2dc
A A



A2: Hamiltonian is bounded from above

_ 1 1
H =—mbb +—cc ——aa
A A

H =— mbb + : (0, 0)

1 —mA

<~

(Y1{0,0}¥), =—|2I'Y)



Spectrum

* Fock space
l_?f’lbc_.ncc_lna | O O O> ( Ny, N, = 0,1 , n,= 0,1,2,---

\/ﬁ .<1—mﬂ>l_
a L O =1 2ca
* Physical states is annihilated by O and QO

| Ny, Ny na)

H|0,0;0) =0]0,0;0)

Reproduce
the spectrum of free fermion

H|[1,0;0) =—m]|1,0;0)




2D Symplectic Fermion



Central Charge

* In CFTo, the central charge is a good indicator of the non-unitarity.
* We often say that

CF T2 with negative central charge is non-unitary.




Does negative central charge
always imply non-unitarity?



Unitarity of Symplectic Fermion in a-vacua
with Negative Central Charge

Shinsei Ryu and JY
arXiv: 2208.12169

Shinsei Ryu

Princeton University



Model

* Two-dimensional Euclidean symplectic fermion (or in other words,
anti-commuting scalar)

5 = [dzdz (2003 + 2370y)

v We consider "NS section”  w(z,0) = —w(z, ©)

X Quantization: g — half-integer

. 1 )
l Z_(bnz—n . C_nZn + bnz—n _ E_ﬂzﬂ)

\/Ztn>0n

From mode expansion  v(z,2) =

anti-commutation:  {b,,b,,} = 118,40 {cpent == 1nl6,, 0

cf) free scalar field in CFT2




The Same Story

* The anti-commutation relation {c,, ¢,,} =—|n|9,,,,leads to
negative norm state

% The negative norm state can be cured by J = exp|iz )’ lc_ncn]
n

n>0

[LeClair, Neubert, 2007], [Robinson, Kapit, LeClair, 2009]

* We have to use J-norm, J-Hermitian adjoint etc,
and the J-norm follows from the path integral.

* Positive norm, real energy eigenvalues: Unitarity!




Virasoro Symmetry

* Central charge ¢ = — 2 from OPE of EMT.

(—1) 2T(w) oT(w)
T()T ~
DT ~ o Y eowr T e

* Virasoro generators

1 1
Ln 5 Z (bn—m + Cn—m)(bm o Cm) + 5 Z (bn—m o Cn—m)(bm + Cm) for n ?é 0

m>0 m>n

1
! ' T()), = — —
Z (b_,b,—c_.c,) __‘/\VO‘CUUlm energy density comes from (7(),

L 822
0 8

m>0

* One can explicitly check the Virasoro algebra

C




Well-known Proposition:

CFT2 with negative central charge should
have negative norm states.



Negative central charge

c=—72

Positive-definite J-norm



Counterexample

x Well-known proposition in CFT»
(1 Ly )= (0 L L1 1) = (204507 = 1)) G )
* Loophole of the proposition with J-norm
v J-Hermitian adjointof L isnot L_, (n # 0) i.e. L,jj *+L_,
L= 5 2 Gt )by = )+ 5 X by = 6By 4 6,)

m>0 m>n

v/ One has to take J-norm of the state L_, | h)

Loy |m)| = (1T YL, k) = (hIL, T L, |h)

v We cannot use Virasoro algebra to prove the proposition.




The symplectic Fermionis a
counterexample of the proposition:

Unitary CFT2 with negative central charge



Negative Entanglement Entropy
in Unitarity Theory?

C 74
SEE(K) :_prelegpred — glOg ;



Positive Entanglement Entropy

* Effective central charge, instead of central charge in Virasoro
algebra, appears in EE. [1405.2804], [1502.03275], [1611.08506]

v Effective central charge is positive for symplectic fermion

C, £

v But, positive effective central charge does not always mean
22

unitarity. e.g. Lee-Yangmodel ¢c = ——, ¢, = —

y- €9 g C 5 off 5




Implication to ¢-vacua



Generator of Bogoliubov Transformation

* Generator of Bogoliubov Transformation:

Gy =i Y 2 (b_ycy+ byc,)

n
n>0

v/ parameterized by arbitrarya, € R~ (n > 0)

v Hermitian, but NOT J-Hermitian

¢l =9, ¢r=_% =g

a a —




Bogoliubov Transformation

* Bogoliubov transtormation of oscillators

7 () ~iG,p iG, _ o
b, e '"7ab e'”7« = cosha b, —sinha, c_

n

¢ C

a l — 1
c_,e'”« =—sinha,b, + cosha,c_

V!
DY
2

|l

—I
€ n

() — ,—1i%, 19, — .
b = e '7ab_ e'"« = cosha,b_, —sinha,c,

~iG, . LGy _ _
e "7ac e« =—sinha,b_, + cosha,c,

oY
Py
2

Il

v/ canonical transformation
v not J-unitary transformation, but similarity transformation




Different Mode Expansion

* Under the Bogoliubov transformation, the mode expansion of yw(z, )

becomes
: 1 )
V/(Z’ 7)) = \/;_7[ Z ;(bnz—” — C_nZn -+ bnz—n — E‘_nZn)
n>0
] 1 - 7
= Z - (Cosh a b'® + sinh a, &%) )z_” — (sinh a b'® + cosh a, &% )Z”
\/ZT n>0 & [

+ (cosh a,b@ + sinh a,c%)z™" — (sinh a,b@ + cosh a,c%)z"
* Let's say we expand y(z, Z) in this form from the beginning and we
omit a and tilde,

w(z,Z) = : Z l [(cosh a,b, + sinh anc_n)z_” — (sinh a,b, + cosh anc_n)zn

\/meon

+ (cosh a,b, + sinh o'cné_n)Z_” — (sinh a,b, + cosh o'zné_n)Z”]

Chooe different vacuum




J-Hermiticity of Hamiltonian

* In this mode expansion, the Hamiltonian (or, L) becomes

Ly= ) [cosh2a,(b_pb, - c_,c,) +sinh2a,(b_,c_, + c,b,) — 2nsinh*a,|

n>0

v Hermitian, but NOT J-Hermitian
v Eigenvalue is not necessarily real in general.

* Direct diagonalization in the subspace 1. 1n=—=b.,10. 2= —=c, 10 1= 15,10

Vi Vi
(21 sinh? a, 0 0 —nsinh 205”\
— (3 0 n 0 0 .
M; = (jlJ Ly | k) M = 0 0 0 ~ diag(0,n,n,2n)
| 7 sinh2a, 0 O 2ncosh’a, )

v reproduce the original spectrum




Lesson:
If there exists Bogoliubov transformation
under which Hamiltonian is J-Hermitian,
one can recover unitarity (real energy).

We are studying the various vacua of higher-derivative theories

in the on-going works. [Bekaert, Mehta, JY]



Jd-vacud

* Bogoliubov transtormation of the vacuum |0)

cosh a, + sinh an%b_nc_n
)10

e

i,
AN |O>=H< y/cosh 2a,

n>0

ja) =

v/ annihilatedby b, , & (n> 0)

n

v Similar to TED state: maximally entangled state of Fock space

#, and # .created by the oscillators b and ¢, respectively

e.g. reduced density matrix (by tracing out %)

c 2

8 cosh2an 10Y(0] + sinh a, b 10)OIb §
P a0 cosh2a, cosh 2a, —n n - becomes thermal state for a,=e




Jd-vacud

* (-vacua
e cosha, + sinha L

9, nnb—nc—n
|a>=\/W|O)=H< \/cosh 2a, ) o

n>0

v e ais not J-unitary because € _ is not J-Hermitian
A = | [ cosh 2a,: NON-trivial normalization

n>0

cf) For usual TFD vacuum, e~*“« is unitary and 4 = 1

v Not invariant under J actioni.e. J|a) = | —a) # |a)

v Namely, the vacuum | 0) is the unique state that is invariant

under J action




Correlation Function w.r.t. a¢-vacua

* Two point function with respect to a-vacuum with J-inner product

h? inh?2
(azp(z)ay/(w))m = ﬁ Z n [<K>n cosh™a, <£>n sinh” a,, ]
n>0

z / cosh2a, w /) cosh2a,

v J-inner product is crucial because a-vacuum is not invariant.

cf) J-inner product does not play a crucial role in correlation
functions w.r.t. |0)

v/ A function of z/w: can diverges forz = w
* For the same value of @, = a, we have

w V4
1\/;“\/%

W@ W10 = g 05

v Independent of o




Naive Correlation Function w.r.t. @-vacua

* Two point function w.r.t. a-vacuum with naive inner product

(Op()ow(w)), = : Z n [<X> "cosh? a, + <£> "sinh? o, + ((Zw)” + (zw)_”) sinh @, cosh a,,
4 . w

W <
n>

v power series of z/w and zw: can diverge atz =wand zw = 1

* For the same value of a, = Q, we have

EE ot 1T
(O ()oy(W)), —, = cosh(Qa) + sinh(2a)
" 87 (z—w)? 8 w2 ( 7— L

v Depends on a

v/ divergeatz=wandzw =1




Naive Correlation Function w.r.t. @-vacua

* Fora, = a, the naive two point function can be written as

(0 (2)owp(w)) o =a = 002, w)cosh? a +

1 1 1 1
5 Go(l/z,l/w)sinh2 o + 5 sinh 2« [—ZGO(Z,I/W) -+ —2G0(1/z, w)
W w Z

v where Gy(z, w) = (0| dp(z)oy(w)|0)
v/ Linear combination of two point functions Gy(z, w) and

Gy(z,1/w)
A w
®
: >
®
-
1w




a-vacua in de Sitter Space

* Antipodal map in de Sitter space

X% embedding coordinate

x*: global dS coordinate

X4(x) Antipodal map . X%x,) = — X9x)

* Two-point function of massless conformally coupled scalar field in o
-vacua of de Sitter space

1
G, (x,y) = Gglx, y)cosh? a + Gp(xy, yA)sinh2 a + ) sinh 2a | Gr(x, y4) + Gr(xy, y)

<—> Two point function w.r.t. Bunch-Davies vacuum




Comparison

2% Naive two point function in a-vacua of symplectic fermion

(al/'/(z)at//(w))an:a = G,(z, w)cosh® a +

w2

1 1 1
S Go(l/z,l/w)sinh2 a + 5 sinh 2« [—GO(Z,l/W) + ;Go(l/z, w)

Al

@~ Two point function in a-vacua of de Sitter space

1
G (x,y) = Gg(x, y)cosh? a + Gg(x,, y,)sinh? a + > sinh 2a | Gg(x, y4) + Gg(xy, y)




Summary

* In higher derivative (quadratic) fermi theory, the J-inner product and

J-Hermitian conjugation is consistent with path integral formulation.
* Path integral measure can rescue the Ostrogradsky instability.

* CFT2 with negative central charge can have non-negative norm.

*x Expect that the symplectic fermion can shed light on the a-vacua

problem in de Sitter space.

* Need to study interacting higher-derivative fermi theories carefully,

which might be useful in understanding of dS/CFT correspondence.







