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Toward “dS/CFT”

✴ Analytic continuation from AdS/CFT correspondence 

✓ Higher spin dS/CFT correspondence 

✓ dS3/CFT2 based based on WN minimal model 

✴ Worldline Observer 

✴ Cosmological correlator

[Anninos, Hartman, Strominger, 2011], [Gim Seng Ng, Strominger, 2012], … 
[Das, Das, Jevicki, Ye, 2012], …

[Hikida, Nishioka, Takayanagi, Taki, 2021, 2022], [Chen, Chen, Hikida, 2022], … 
[Chen, Hikida, Taki, Uetoko, 2024]

[Anninos, Hartnoll and Hofman, 2011], …, [Witten, 2023], [Loganayagam, Shetye, 2023], … 
[Anninos, Galante, Maneerat, 2024], …

[McFadden, Skenderis, 2011], [Mata, Raju, Trivedi, 2012], [Arkani-Hamed, Maldacena, 2015], … 
[Arkani-Hamed, Baumann, Lee, Pimentel, 2018], [Jain, Kundu, Kundu, Mehta, Sake, 2022], …



Old Story about dS/CFT
✴ Higher spin dS/CFT correspondence 

✴ Analytic continuation:  

✴ The matching of correlation functions follows from AdS/CFT. 

✴ Geometric interpretation is obscure. 

✓ e.g. Where is the boundary?

N ⟶ − N

Higher spin gravity 
in AdS4

3D O(2N) Vector 
Model

A
dS
/C
FT

d
S/C

FT

Analytic 
Continuation

3D Sp(2N) Vector 
Model

Higher spin gravity 
in dS4

[Anninos, Hartman, Strominger, 2011], [Gim Seng Ng, Strominger, 2012], [Das, Das, Jevicki, Ye, 2012], …



Sp(2N) Model

✴ called as “symplectic fermion” or “anti-commuting scalar” 

✴ In the old time, there have been many works as an exotic field theory. 
(e.g. negative central charge, Logarithmic CFT) 

✴ This is a higher-derivative theory 

✓ Usual fermion (anti-commuting field): single-derivative 

✓ Symplectic fermion: two-derivative

[Kausch,1995], [Gaberdiel, Kausch, 1999], [Kausch,2000],  
[LeClair, Neubert, 2007], [Robinson, Kapit, LeClair, 2009]…

S =
1
2 ∫ ddx ∂μψi∂μψi



Higher-derivative Theory
✴ Ostrogradsky Instability 

✓ The Lagrangian with higher-(time-)derivatives has larger Hilbert space than 
we often expect. 

✓ “Usually”, Hamiltonian of the higher-derivative theory is unbounded from 
below. 

✴ This instability is also involved with 

✓ Non-normalizable vacuum 

✓ Negative norm state etc 

✴ One might be able to avoid one of them by some “trick”. But one cannot evade all 
of them. 

e.g. H = a†
1 a1 − a†

2 a2

e.g. L =
1
2

·x2 −
1
2

x2 −
ϵ
2

··x2



Is it TRUE in general?



Is it TRUE in general?

What about symplectic Fermion?



Is it TRUE in general?

What about symplectic Fermion?

Review: Higher-derivative fermion



OUTLINE

I. Fermionic Higher-derivative Toy Model 

II. “Higher-derivative” Theory from Field Redefinition 

III. 2D Symplectic Fermion 

IV. Implication to -vacuaα



Fermionic Higher-derivative Toy Model



Piljin Yi
KIAS

Kyungsun Lee
KIAS

-deformed Fermionic Theories Revisited
Kyungsun Lee, Piljin. Yi and JY

arXiv: 2104.09529

TT̄



Quantum Mechanical Toy Model
✴ Consider additional term to the (0+1)-dim free fermion 

✓ the extra term is the same as kinetic term of boson 

✴ From Lagrangian, the conjugate momentum can be obtained: 

✓  can be expressed in terms of canonical variables! 

✓ No constraint  ➡︎  No elimination of D.o.F. : Fermion “Doubling”

·ψ

π =
δ L

δ ·ψ
=

i
2

ψ̄ −λ ·̄ψ π̄ =
δ L

δ ·̄ψ
= −

i
2

ψ −λ ·ψ

·ψ = −
1
λ (π̄ +

i
2

ψ) ·̄ψ = −
1
λ (π −

i
2

ψ̄)

L =
i
2

ψ̄ ·ψ −
i
2

·̄ψ ψ + mψ̄ ψ −λ ·̄ψ ·ψ

{ ψ , ψ̄ , π , π̄ }



Quantization
✴ Quantization: Canonical anti-commutation relation 

✓  : (real) parameter for Bogoliubov transformation 
generated by  

✓ Cannot avoid minus sign in RHS of  

✴ Hamiltonian becomes 

θ
G = i(b̄c + bc̄)

{c, c̄} = − 1

{ψ, π} = i {ψ̄, π̄} = − i

π̄ +
i
2

ψ = i(sinh θb + cosh θc)π −
i
2

ψ̄ = − i(sinh θb̄ + cosh θc̄)

π̄ −
i
2

ψ = − i(cosh θb + sinh θc)π +
i
2

ψ̄ = i(cosh θb̄ + sinh θc̄)

{b, b̄} = 1 {c, c̄} = − 1

H = − (me2θ +
1
λ

sinh2 θ) b̄b − (me2θ +
1
λ

cosh2 θ)c̄c − (me2θ +
1
λ

cosh θ sinh θ)(b̄c + c̄b)



Q: Does this Hamiltonian 
is Hermitian?

H = − (me2θ +
1
λ

sinh2 θ) b̄b − (me2θ +
1
λ

cosh2 θ)c̄c

+(me2θ +
1
λ

cosh θ sinh θ)(b̄c + c̄b)



If you have two students,

H = − (me2θ +
1
λ

sinh2 θ) b̄b − (me2θ +
1
λ

cosh2 θ)c̄c

+(me2θ +
1
λ

cosh θ sinh θ)(b̄c + c̄b)

L =
i
2

ψ̄ ·ψ −
i
2

·̄ψ ψ + mψ̄ ψ −λ ·̄ψ ·ψ

Z = ∫ dψdψ̄e− ∫β
0 dτ L

Hab ≡ ⟨a |H |b⟩ in Fock space

Hamiltonian Lagrangian



If you have two students,

Hamiltonian Lagrangian
E1 = 0

E3 =
1
λ

E4 =
1 − 2mλ + 1 + 4m2λ2

2λ

E2 =
1 − 2mλ − 1 + 4m2λ2

2λ

E1 = 0

E2 =
1 − 1 + 4mλ

2λ

E3 =
1
λ

E4 =
1 + 1 + 4mλ

2λ

: real for all m, λ
: can be complex 

for some m, λ



Q: Does this Hamiltonian 
is Hermitian?

H = − (me2θ +
1
λ

sinh2 θ) b̄b − (me2θ +
1
λ

cosh2 θ)c̄c

+(me2θ +
1
λ

cosh θ sinh θ)(b̄c + c̄b)

If you answer the Hamiltonian is Hermitian,

then you would think the result of               is correct



Negative Norm State

✴ From anti-commutation relation 

    the norm of the excited state              is 

✓ Either the vacuum or  has negative norm! 

✴ This is similar to Ostrogradsky instability for higher derivative theory.

c̄ |0⟩

{b, b̄} = 1 {c, c̄} = − 1

⟨0 |cc̄ |0⟩ = − ⟨0 |0⟩ − ⟨0 | c̄c |0⟩ = − ⟨0 |0⟩

c† |0⟩



Is this model pathological?



Too Early to conclude 
because



Resolution of Negative Norm
✴ Define  operator:  unitary and Hermitian 

✴ Define J-inner product 

✴ J-inner product is positive-definite 

J
J = eiπ c̄c JcJ = − c

Jc̄J = − c̄

JbJ = b

Jb̄J = b̄

⟨ 𝒪 ⟩J ≡ ⟨ J 𝒪 ⟩

c̄ |0⟩
2

J
= ⟨0 |cJc̄ |0⟩ = − ⟨0 |cc̄ |0⟩ = ⟨0 |0⟩

J† = J−1 = J

c.f.)  in SUSY(−1)F

[LeClair, Neubert, 2007], [Robinson, Kapit, LeClair, 2009]



Ad hoc?



Relation to Path Integral
✴ You might think that the J-norm is an artificial ad hoc modification to 

save the theory. 

✓ We showed that the J-norm (not the “ordinary” norm) follows 
from the path integral formalism. 

✴ The connection between operator formalism and path integral 
formalism can be found by inserting the completeness relation into 
the transition amplitude. e.g.  

✓ Completeness relation: 

✓ for example,                                                      at finite temperature

⟨η̄f |e−iTH |ηi⟩

= |0⟩⟨0 | + c̄ |0⟩⟨0 |c J + ⋯

1 = |0⟩⟨0 | − c̄ |0⟩⟨0 |c + ⋯

tr(J e−βH) = ∫ψ(0)=−ψ(β),ψ̄(0)=−ψ̄(β)
Dψ Dψ̄ e−S



No

Ad hoc?



Energy Spectrum
✴ If you define a model by Lagrangian, the correct operator formalism 

of the model should use J-norm. It is not a choice. 

✴ There are two ways to get the energy spectrum: 

✓ With Fock state , diagonalize the matrix 

✓ Find energy eigenstates directly without bra state 

✴ The result of          is correct. 

|a⟩ Mab ≡ ⟨a |H |b⟩J

H |E⟩ = E |E⟩

E1 = 0

E2 =
1 − 1 + 4mλ

2λ

E3 =
1
λ

E4 =
1 + 1 + 4mλ

2λ

Lagrangian

cf) biorthogonal basis [1308.2609] [quant-ph/0306040], …



Wait a second…. 
Could the energy be complex?

E1 = 0

E2 =
1 − 1 + 4mλ

2λ

E3 =
1
λ

E4 =
1 + 1 + 4mλ

2λ

when   ?4mλ < − 1



J-Hermitian Adjoint

✴ With new J-inner product, we should define new J-Hermitian adjoint. 

✴ Then, the Hermiticity of an operator should be defined with  
J-Hermitian adjoint. 

𝒪†J ≡ J𝒪†J so that ⟨Φ |𝒪Ψ⟩J = ⟨ 𝒪†J Φ |Ψ⟩J

An operator  is J-Hermitian iff 𝒪 𝒪†J = 𝒪



Bi-orthogonal State

✴ Instead of inserting the operator  in the inner product, it is more 
convenient to define new bra state by using J-Hermitian adjoint. 
(double-bracket notation) 

✓ The overlaps of double-bracket bra and ket states gives the J-
inner product. 

✓ Use double-bracket, and forget the insertion of J

J

|Φ⟩⟩ = 𝒪 |0⟩⟩ = |Φ⟩ ⟶ ⟨⟨Φ | ≡ ⟨⟨0 |𝒪†J

⟨⟨Φ |𝒪 |Ψ⟩⟩ = ⟨Φ |𝒪 |Ψ⟩J



Q: Does this Hamiltonian 
is Hermitian?

H = − (me2θ +
1
λ

sinh2 θ) b̄b − (me2θ +
1
λ

cosh2 θ)c̄c

+(me2θ +
1
λ

cosh θ sinh θ)(b̄c + c̄b)



Q: Does this Hamiltonian 
is Hermitian?

No

J-Hermitian?
H = − (me2θ +

1
λ

sinh2 θ) b̄b − (me2θ +
1
λ

cosh2 θ)c̄c

+(me2θ +
1
λ

cosh θ sinh θ)(b̄c + c̄b)



Wait a second…. 
Could the energy be complex?

E1 = 0

E2 =
1 − 1 + 4mλ

2λ

E3 =
1
λ

E4 =
1 + 1 + 4mλ

2λ

when   ?4mλ < − 1

Since Hamiltonian is not J-Hermitian,  
it is not surprising to have complex energy.



When do we have real spectrum?
✴ For a special value of , the Hamiltonian becomes J-Hermitian. 

✴ This special value exists  
only when  
: identical to the condition for 
real energy spectrum.

θ

4mλ > − 1

H =
1 − 1 + 4mλ

2λ
b̄b −

1 + 1 + 4mλ
2λ

c̄c

tanh 2θ = −
2mλ

2mλ + 1

H = − (me2θ +
1
λ

sinh2 θ) b̄b − (me2θ +
1
λ

cosh2 θ)c̄c − (me2θ +
1
λ

cosh θ sinh θ)(b̄c + c̄b)

m λ

-4

-2

2

4

-
2 mλ

1 + 2 mλ

E2/4 =
1 ∓ 1 + 4mλ

2λ



As  goes to 0….λ

✴ The small  expansion of the Hamiltonianλ

H =
1 − 1 + 4mλ

2λ
b̄b −

1 + 1 + 4mλ
2λ

c̄c

L =
i
2

ψ̄ ·ψ −
i
2

·̄ψ ψ + mψ̄ ψ −λ ·̄ψ ·ψ

L =
i
2

ψ̄ ·ψ −
i
2

·̄ψ ψ + mψ̄ ψ
as λ → 0

: ordinary free fermion

H = (− m + m2λ + ⋯)b†b − (1
λ

+ m − m2λ + ⋯)c†c

diverges as λ → 0
Decoupled!!



Abhishek Mehta
APCTP ➙ Kyung Hee University

Xavier Bekaert
University of Tours

We are exploring more higher-
derivative theories. 

(See Mehta’s poster)



“Higher-derivative” Theory 
from Field Redefinition



Kyungsun Lee
KIAS

One section in the paper, “  deformation of 
 off-shell supersymmetry and partially 
broken supersymmetry”

Kyungsun Lee and JY
arXiv: 2306.08030

TT̄
𝒩 = (1,1)



Equivalence Theorem in Path Integral

✴ In the path integral, the physics (or, specifically, physical observables 
like S-matrix, correlation functions) should not depends on the field 
redefinition.

∫ 𝒟ϕ eiS[ϕ] ⟶ ∫ 𝒟Φ [ δϕ
δΦ ] eiS[ϕ[Φ]]

ϕ ⟶ ϕ[Φ]Field Redefinition: 



“Higher-derivative” Theory from Free Theory

✴ Let us consider a free scalar field 

✴ Under a field redefinition , the Lagrangian has higher-
derivatives 

✴ According to the equivalence theorem in QFT, it should describe the 
free scalar field theory.

ϕ = ∂2Φ

L = −
1
2

∂μϕ∂μϕ

L = −
1
2

(∂μ∂2Φ)(∂μ∂2Φ)



Does this free theory have 
Ostrogradsky instability?

L = −
1
2

(∂μ∂2Φ)(∂μ∂2Φ)



Does this free theory have 
Ostrogradsky instability?

L = −
1
2

(∂μ∂2Φ)(∂μ∂2Φ)

No.  
Probably most of you know the answer 

because it is an old problem.



Going back to Free Fermion

✴ (0+1)-dim Free Complex Fermion 

✴ Let’s take field redefinition 

✓ Then we have 

L = − i ·̄ψ ψ + mψ̄ ψ

ψ = η + iλ ·η ψ̄ = η̄

L = ( i
2

+ iλm)η̄ ·η −
i
2

·̄ηη + λ ·̄η ·η + mη̄η



What is wrong with this 
field redefinition?



Comparison of Phase Space

L = − i ·̄ψ ψ + mψ̄ ψ

Constraints

π = 0 π̄ + iψ̄ = 0

ψ , ψ̄ , π , π̄

Phase Space

✴ Comparison of Phase space 



Comparison of Phase Space

L = − i ·̄ψ ψ + mψ̄ ψ

Constraints

π = 0 π̄ + iψ̄ = 0

ψ , ψ̄ , π , π̄

Phase Space

✴ Comparison of Phase space 



Comparison of Phase Space

L = − i ·̄ψ ψ + mψ̄ ψ L = ( i
2

+ iλm)η̄ ·η −
i
2

·̄ηη + λ ·̄η ·η + mη̄η

Constraints

π = 0 π̄ + iψ̄ = 0

ψ , ψ̄ , π , π̄

Phase Space

✴ Comparison of Phase space 



Comparison of Phase Space
✴ Comparison of Phase space 

L = − i ·̄ψ ψ + mψ̄ ψ L = ( i
2

+ iλm)η̄ ·η −
i
2

·̄ηη + λ ·̄η ·η + mη̄η

η , η̄ , π , π̄

Constraints
No constraint

π = 0 π̄ + iψ̄ = 0

ψ , ψ̄ , π , π̄

Phase Space Phase Space



Resolution of this problem

Jacobian  
as path integral measure

∫ 𝒟ϕ eiS[ϕ] ⟶ ∫ 𝒟Φ [ δϕ
δΦ ] eiS[ϕ[Φ]]



Jacobian in Path Integral
✴ Jacobian from the change of variable in the integration 

✴ Jacobian should be taken into account in the field redefinition of 
path integral 

y = y[x]

Φ = Φ[φ]

∫ dy f [y] = ∫ dx
dy
dx

f [y[x]]

ψ = ψ[η]

∫ DΦ e−S[Φ] = ∫ Dφ
∂Φ
∂φ

e−S[Φ[φ]] ∫ Dψ e−S[ψ] = ∫
Dη
∂ψ
∂η

e−S[ψ[η]]



BRST Symmetry
✴ Exponentiate the Jacobian 

✴ BRST symmetry from the field redefinition “gauge transformation”

Ltot = L[Φ[φ]] + b̄
∂Φ
∂φ

b

Φ = Φ[φ] ψ = ψ[η]∫ DΦ e−S[Φ] = ∫ Dφ
∂Φ
∂φ

e−S[Φ[φ]] ∫ Dψ e−S[ψ] = ∫
Dη
∂ψ
∂η

e−S[ψ[η]]

Ltot = L[ψ[η]] + γ̄
∂ψ
∂η

γ: (fermi) ghost : boson

δφ = ϵ b

δb = 0

δb̄ = − ϵ
δS
δΦ

δη = ϵ γ

δγ = 0

δγ̄ = ϵ
δS
δψ

[Alfaro, Damgaard, 1990][Bastianelli, 1990]
[Slavnov, 1990]



Back to Free Fermion
✴ Full Lagrangian including exponentiated Jacobian 

✴ BRST Symmetry 

✓ BRST charge: 

✴ The same Lagrangian can be obtained by  another field redefinition 
from free fermion:  and  (up to total derivative) 

✓ The corresponding BRST symmetry: 

✓ BRST charge:

ψ = η ψ̄ = η̄ − iλ ·̄η

L = iλmη̄ ·η − i ·̄ηη + λ ·̄η ·η + mη̄η + γ̄(1 + iλ∂)γ

Q = − (iλmη̄ + λ ·̄η)γ

δη = ϵ γ δη̄ = δγ = 0δγ̄ = ϵ( − i ·̄η + mη̄)

Q = γ̄(iλmη − λ ·η)
δη̄ = ϵ̄γ̄ δη = δγ̄ = 0δγ = − ϵ̄( − i ·η − mη)



Similar Canonical Quantization
✴ Conjugate momentum 

✴ Canonical (anti-)commutation relation 

✓ Transformation to Oscillators (with Bogoliubov parameter ) θ
{η, π} = i [γ, γ̄] =

1
λ

{η̄, π̄} = − i

π =
δL
δ ·η

= iλmη̄ + λ ·̄η π̄ =
δL
δ ·̄η

= − iη + λ ·η

Π =
δL
δ ·γ

= iλγ̄ Π̄ =
δL
δ ·̄γ

= 0

{b, b̄} = 1 {c, c̄} = − 1 [a, ā] = 1

: 2nd class constraints

from Dirac bracket



Hamiltonian
✴ Hamiltonian and BRST charge (for a specific ) 

✓ Hamiltonian can be expressed as

θ

H = − mb̄b +
1
λ

c̄c −
1
λ

āa

Q = i( 1 − mλ
λ )1

2 c̄a Q = − i( 1 − mλ
λ )1

2 āc

H = − mb̄b +
1

1 − mλ
{Q, Q}

(for all value of  and , one can always find . )m λ θ ∈ ℝ



Q: Is  and  Hermitian 
conjugate to each other?

Q Q

Q = i( 1 − mλ
λ )1

2 c̄a Q = − i( 1 − mλ
λ )1

2 āc
Hermitian conjugate?



Q2: Hamiltonian is bounded from 
below or above?

vs

H = − mb̄b +
1
λ

c̄c −
1
λ

āa

H = − mb̄b +
1

1 − mλ
{Q, Q}



Recall:  
Need J-Hermitian conjugation

{c, c̄} = − 1

𝒪†J ≡ J𝒪†J

⟨Φ |𝒪Ψ⟩J = ⟨ 𝒪†J Φ |Ψ⟩J



A1:  is NOT J-Hermitian 
conjugate to , but…

Q
Q

Q = i( 1 − mλ
λ )1

2 c̄a Q = − i( 1 − mλ
λ )1

2 āc

Q†J = − Q



A2: Hamiltonian is bounded from above

H = − mb̄b +
1
λ

c̄c −
1
λ

āa

H = − mb̄b +
1

1 − mλ
{Q, Q}

⟨Ψ |{Q, Q} |Ψ⟩J = − Q |Ψ⟩ 2
J



✴ Fock space 

✴ Physical states is annihilated by  and  

✴ The same conclusion can be obtained by BRST cohomology with .

Q Q

Q

Spectrum

|nb, nc; na⟩
1
na!

b̄nbc̄ncāna |0,0; 0⟩ ( nb, nc = 0,1 , na = 0,1,2,⋯ )

H |0,0; 0⟩ = 0 |0,0; 0⟩

H |1,0; 0⟩ = − m |1,0; 0⟩

Reproduce  
the spectrum of free fermion

Q = i( 1 − mλ
λ )1

2 c̄a

Q = − i( 1 − mλ
λ )1

2 āc



2D Symplectic Fermion



Central Charge

✴ In CFT2, the central charge is a good indicator of the non-unitarity. 

✴ We often say that 

CFT2 with negative central charge is non-unitary.



Does negative central charge 
always imply non-unitarity?



Shinsei Ryu
Princeton University

Unitarity of Symplectic Fermion in -vacua 
with Negative Central Charge

Shinsei Ryu and JY
arXiv: 2208.12169

α



Model
✴ Two-dimensional Euclidean symplectic fermion (or in other words, 

anti-commuting scalar) 

✓ We consider “NS section”:     

✴ Quantization: 

ψ(τ,0) = − ψ(τ, ℓ)

S = ∫ dzdz̄ (2∂ψ̄∂̄ψ + 2∂̄ψ̄∂ψ)

ψ (z, z̄) =
i

4π ∑
n>0

1
n (bnz−n − c−nzn + b̄nz̄−n − c̄−nz̄n)

{bn, bm} = |n |δn+m,0 {cn, cm} = − |n |δn+m,0

From mode expansion

anti-commutation :

cf) free scalar field in CFT2

half-integer



The Same Story

✴ The anti-commutation relation  leads to 
negative norm state 

✴ The negative norm state can be cured by  

✴ We have to use J-norm, J-Hermitian adjoint etc.,  
and the J-norm follows from the path integral. 

✴ Positive norm, real energy eigenvalues: Unitarity!

{cn, cm} = − |n |δn+m,0

J = exp[iπ∑
n>0

1
n

c−ncn]
[LeClair, Neubert, 2007], [Robinson, Kapit, LeClair, 2009]



Virasoro Symmetry
✴ Central charge  from OPE of EMT. 

✴ Virasoro generators 

✴ One can explicitly check the Virasoro algebra 

c = − 2

T(z)T(w) ∼
(−1)

(z − w)4
+

2T(w)
(z − w)2

+
∂T(w)
(z − w)

Ln =
1
2 ∑

m>0

(bn−m + cn−m)(bm − cm) +
1
2 ∑

m>n

(bn−m − cn−m)(bm + cm)

L0 = ∑
m>0

(b−mbm − c−mcm) −
1
8

⟨T(z)⟩J = −
1

8z2vacuum energy density comes from

[Ln, Lm] = (n − m)Ln+m +
c

12
n(n2 − 1)δn+m,0 with c = − 2

for n ≠ 0



Well-known Proposition: 
CFT2 with negative central charge should 

have negative norm states.



Positive-definite J-norm

Negative central charge 
c = − 2



Counterexample
✴ Well-known proposition in CFT2 

✴ Loophole of the proposition with J-norm 

✓ J-Hermitian adjoint of  is not    i.e. 

✓ One has to take J-norm of the state   

✓ We cannot use Virasoro algebra to prove the proposition.

Ln L−n (n ≠ 0)

L−n |h⟩

⟨h | LnL−n |h⟩ = ⟨h | [Ln, L−n] |h⟩ = (2nh +
c

12
n(n2 − 1))⟨h |h⟩

Ln =
1
2 ∑

m>0

(bn−m + cn−m)(bm − cm) +
1
2 ∑

m>n

(bn−m − cn−m)(bm + cm)

L†j
n ≠ L−n

L−n |h⟩
J

= ⟨h |J L†J
−nL−n |h⟩ = ⟨h |Ln J L−n |h⟩



The symplectic Fermion is a 
counterexample of the proposition: 

Unitary CFT2 with negative central charge



Negative Entanglement Entropy 
in Unitarity Theory?

SEE(ℓ) = − ρred log ρred =
c
3

log( ℓ
ϵ )



Positive Entanglement Entropy

✴ Effective central charge, instead of central charge in Virasoro 
algebra, appears in EE. 

✓ Effective central charge is positive for symplectic fermion 

✓ But, positive effective central charge does not always mean 
unitarity. e.g. Lee-Yang model , c = −

22
5

ceff =
2
5

SEE(ℓ) =
ceff

3
log( ℓ

ϵ ) ceff = c − 24Δmin = 1

[1405.2804], [1502.03275], [1611.08506]



Implication to -vacuaα



Generator of Bogoliubov Transformation

✴ Generator of Bogoliubov Transformation: 

✓ parameterized by arbitrary  

✓ Hermitian, but NOT -Hermitian 

αn ∈ ℝ (n > 0)

J

𝒢α = i∑
n>0

αn

n (b−nc−n + bncn)

𝒢†
α = 𝒢α 𝒢†𝒥

α = − 𝒢α = 𝒢−α



Bogoliubov Transformation
✴ Bogoliubov transformation of oscillators 

✓ canonical transformation 
✓ not -unitary transformation, but similarity transformation J

b̃(α)
n ≡ e−i𝒢αbnei𝒢α = cosh αnbn − sinh αnc−n

c̃(α)
−n ≡ e−i𝒢αc−nei𝒢α = − sinh αnbn + cosh αnc−n

b̃(α)
−n ≡ e−i𝒢αb−nei𝒢α = cosh αnb−n − sinh αncn

c̃(α)
n ≡ e−i𝒢αcnei𝒢α = − sinh αnb−n + cosh αncn



Different Mode Expansion
✴ Under the Bogoliubov transformation, the mode expansion of  

becomes 

✴ Let’s say we expand  in this form from the beginning and we 
omit  and tilde, 

ψ(z, z̄)

ψ(z, z̄)
α

=
i

4π ∑
n>0

1
n [(cosh αnb̃(α)

n + sinh αnc̃(α)
−n)z−n − (sinh αnb̃(α)

n + cosh αnc̃(α)
−n)zn

+(cosh ᾱn
˜̄b(ᾱ)

n + sinh ᾱn ˜̄c(ᾱ)
−n)z̄−n − (sinh ᾱn

˜̄b(ᾱ)
n + cosh ᾱn ˜̄c(ᾱ)

−n)z̄n]

ψ (z, z̄) =
i

4π ∑
n>0

1
n (bnz−n − c−nzn + b̄nz̄−n − c̄−nz̄n)

ψ (z, z̄) =
i

4π ∑
n>0

1
n [(cosh αnbn + sinh αnc−n)z−n − (sinh αnbn + cosh αnc−n)zn

+(cosh ᾱnb̄n + sinh ᾱnc̄−n)z̄−n − (sinh ᾱnb̄n + cosh ᾱnc̄−n)z̄n]
Chooe different vacuum



-Hermiticity of HamiltonianJ
✴ In this mode expansion, the Hamiltonian (or, ) becomes 

✓ Hermitian, but NOT -Hermitian 
✓ Eigenvalue is not necessarily real in general. 

✴ Direct diagonalization in the subspace 

✓ reproduce the original spectrum

L0

J

L0 = ∑
n>0

[cosh 2αn(b−nbn − c−ncn) + sinh 2αn(b−nc−n + cnbn) − 2n sinh2 αn]

|0⟩ , |1⟩ ≡
1

n
b−n |0⟩ , |2⟩ ≡

1

n
c−n |0⟩ , |3⟩ ≡

1
n

b−nc−n |0⟩

M =

−2n sinh2 αn 0 0 −n sinh 2αn

0 n 0 0
0 0 n 0

n sinh 2αn 0 0 2n cosh2 αn

∼ diag(0,n, n,2n)Mji ≡ ⟨ j | J L0 |k⟩



Lesson:  
If there exists Bogoliubov transformation  
under which Hamiltonian is J-Hermitian,  
one can recover unitarity (real energy).

We are studying the various vacua of higher-derivative theories  

in the on-going works. [Bekaert, Mehta, JY]



-vacuaα
✴ Bogoliubov transformation of the vacuum  

✓  annihilated by  

✓ Similar to TFD state: maximally entangled state of Fock space 

 and   created by the oscillators  and , respectively 

e.g. reduced density matrix (by tracing out ) 

 

|0⟩

b̃n , c̃n (n > 0)

ℋb ℋc b c
ℋc

ρb = ⨂
n>0

( cosh2 αn

cosh 2αn
|0⟩⟨0 | +

sinh2 αn

cosh 2αn
b−n |0⟩⟨0 |bn)

|α⟩ =
e−i𝒢α

𝒩
|0⟩ = ∏

n>0
(cosh αn + sinh αn

1
n b−nc−n

cosh 2αn
) |0⟩

αn = e− β |n |
2: becomes thermal state for 



-vacuaα
✴ -vacua 

✓   is not -unitary because  is not -Hermitian  
: non-trivial normalization 

cf) For usual TFD vacuum,  is unitary and  

✓ Not invariant under  action i.e.  

✓ Namely, the vacuum  is the unique state that is invariant 

under   action

α

e−i𝒢α J 𝒢α J
𝒩 = ∏

n>0

cosh 2αn

e−i𝒢α 𝒩 = 1

J J |α⟩ = | − α⟩ ≠ |α⟩

|0⟩
J

|α⟩ =
e−i𝒢α

𝒩
|0⟩ = ∏

n>0
(cosh αn + sinh αn

1
n b−nc−n

cosh 2αn
) |0⟩



Correlation Function w.r.t. -vacuaα
✴ Two point function with respect to -vacuum with -inner product 

✓ -inner product is crucial because -vacuum is not invariant. 

cf) -inner product  does not play a crucial role in correlation 
functions w.r.t.   

✓ A function of : can diverges for  

✴ For the same value of , we have 

✓ Independent of 

α J

J α
J

|0⟩

z /w z = w
αn = α

α

⟨∂ψ̄ (z)∂ψ (w)⟩J,α =
1

4πzw ∑
n>0

n[( w
z )n cosh2 αn

cosh 2αn
− ( z

w )n sinh2 αn

cosh 2αn ]

⟨∂ψ̄(z)∂ψ(w)⟩J,α =
1

8π

w
z + z

w

(z − w)2



Naive Correlation Function w.r.t. -vacuaα

✴ Two point function w.r.t. -vacuum with  naive inner product 

✓ power series of  and : can diverge at  and  

✴ For the same value of , we have 

✓ Depends on  

✓ diverge at  and 

α

z /w zw z = w zw = 1

αn = α

α
z = w zw = 1

⟨∂ψ̄ (z)∂ψ (w)⟩α =
1

4πzw ∑
n>0

n[( w
z )ncosh2 αn + ( z

w )nsinh2 αn + ((zw)n + (zw)−n)sinh αn cosh αn]

⟨∂ψ̄ (z)∂ψ (w)⟩αn=α =
1

8π

z
w + w

z

(z − w)2
cosh(2α) +

1
8π

1
w2

zw + 1
zw

(z − 1
w )2

sinh(2α)



Naive Correlation Function w.r.t. -vacuaα
✴ For , the naive two point function can be written as 

✓ where  

✓ Linear combination of two point functions  and 

 

αn = α

G0(z, w) = ⟨0 |∂ψ̄(z)∂ψ(w) |0⟩

G0(z, w)
G0(z,1/w)

⟨∂ψ̄(z)∂ψ(w)⟩αn=α = G0(z, w)cosh2 α +
1

z2w2
G0(1/z,1/w)sinh2 α +

1
2

sinh 2α[ 1
w2

G0(z,1/w) +
1
z2

G0(1/z, w)]

w

z
1/w



-vacua in de Sitter Spaceα
✴ Antipodal map in de Sitter space 

✴ Two-point function of massless conformally coupled scalar field in 
-vacua of de Sitter space 

α

x

xA

: embedding coordinateXa

: global dS coordinatexμ

Xa(x) Xa(xA) = − Xa(x)Antipodal map

Gα(x, y) = GE(x, y)cosh2 α + GE(xA, yA)sinh2 α +
1
2

sinh 2α[GE(x, yA) + GE(xA, y)]
Two point function w.r.t. Bunch-Davies vacuum

y



Comparison

Gα(x, y) = GE(x, y)cosh2 α + GE(xA, yA)sinh2 α +
1
2

sinh 2α[GE(x, yA) + GE(xA, y)]

⟨∂ψ̄ (z)∂ψ (w)⟩αn=α = G0(z, w)cosh2 α +
1

z2w2
G0(1/z,1/w)sinh2 α +

1
2

sinh 2α[ 1
w2

G0(z,1/w) +
1
z2

G0(1/z, w)]

Naive two point function in -vacua of symplectic fermionα

Two point function in -vacua of de Sitter spaceα



Summary
✴ In higher derivative (quadratic) fermi theory, the J-inner product and 

J-Hermitian conjugation is consistent with path integral formulation. 

✴ Path integral measure can rescue the Ostrogradsky instability. 

✴ CFT2 with negative central charge can have non-negative norm. 

✴ Expect that the symplectic fermion can shed light on the -vacua 

problem in de Sitter space. 

✴ Need to study interacting higher-derivative fermi theories carefully, 

which might be useful in understanding of dS/CFT correspondence.

α



Thank You


