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Canonical quantization of gravity theories:

e Lorentzian approach vs Euclidean path integral.

e Diffeo (gauge) symmetries.

e Discrete bulk spectrum is essential for the finiteness of entropy.
[In collaboration with CJ Kim & SH Yi]



JT Gravity dual to [Saad—Shenker—Stanford] Matrix Model

» The AdS2 dilaton gravity is consisting of
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» The equations of motion read

R+2 =0 (— AdS, with arbitrary genus g)
V.V — gabv2¢ + g =0



» The leading-order (g = 0) geometry is given by the gobal AdS,
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where the coordinate y is ranged from
—m/2 to +m/2. (Two sided!)
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» The vacuum (BH) solution for the dilaton field is given by
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» Make the coordinate transformation
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Two-sided black holes

» One is led to the corresponding AdS Rindler metric and the dilaton

field:
2 2 2
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The time t (= u) runs over (—o0, 00).

» The singularity is determined by ®> = ¢y + ¢ = 0 where ®? plays
the role of radius squared of the transverse space from the viewpoint
of the dimensional reduction from the higher dimensions as in

ds; = dshgs, + 15 ©*(d6? + sin*0d?)

» The geometry is intrinsically two-sided!



Eclidean disk

» The Euclidean disk metric becomes

2

14
ds? = oy (d72 + dp?)

where —oo < 7g < oo. This Euclidean disk may have two-sided
interpretation.

» From the Rindler, the Euclidean disk metric becomes
ds? = dp? +sinh?p dt?

where r = cosh p and tg ~ tg + 27.



Schwarzian description of the bulk — Bd particle picture

» Any bulk fluctuation can be reflected through the boundary
fluctuation: This is nothing but the mode of reparameterization.
These fluctuations are described by the Schwarzian dynamics.

» 1. First we take the dilaton as the size
of transverse space and introduce a
cut-off trajectory in term of the dilaton

¢|8M:<5% (=¢r)

» 2. The induced metric at the cut off
trajectory will be fixed by

1 '(u)du \?
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» u is the physical (gauge-fixed) boundary time running from
(=00, +00). The remaining degrees are given by 7,(u) and 7(u).



» Using the rules, evaluate the on shell gravity action. This leads to

_ 7i(u) 7r(u)
S = —C/du{{tan 5 ,u}+{tanT,u}
1f”2 77N\
{f(u),ut = 27 + (f,>
where C is the coupling with C = ¢ (= 1/2).

» For our black hole spacetime, the Schwarzian equation of motion is
solved by
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where we set 7, = 7, = 7(u).

Therefore 7 coordinate along the

cut-off is ranged from —7/2 to
+7/2.




» Let us try to quantize the L-R system which involves higher
derivative terms
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Introducing the Lagrange multiplier term, one may rewrite the
above Lagrangian as

C 1 1
= Then by introducing the p,, ,
conjugated to the variable x,, one

finds left right Hamiltonians

Lr// = pTr//Trl// + pX,//X/r/I - Hr//

11, )
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> Note eX/! = C/ /) = dom €os prom(u) ~ O(< -e).



SL2 gauge symmetries

» The linear dependence in p; tells us that the Hamiltonian is
unbounded from below. However (large diffeo) gauge symmetries
will make the system well defined.

» SL2 (~ SO(2,1)) gauge symmetries: For this we use the embedding
space coordinates of ads2: —Y? + Y3 + Y3 =1 with

CcoST sinT
Yy =tanpu, Yo= , Y3=
COS i COos 11

= SL2 rotation is an isometric
transformation with Killing vectors
[Lin-Maldacena-Zhao 19]

& = —0, (r-translation) - = =

& = —cosTsinpud; —sintcospd, (boost)

& = —sinTsinpd; +cosTcospud, (scaling)

T+
Ts



» The SL2 gauge symmetries are generated by
Ji = JP (bulk) + JI (bd-R) + J! (bd-L)

» Classically, one has the corresponding constraints, J; = 0, and
imposing these leads to consistent solutions of the left-right
boundary dynamics.

» Quantum mechanically, imposing the constraints properly on the
wave function
Jiv=0

leads to the full quantization of our gravity theory.



Gauge fixing and constraints

» Our starting point is the unconstrained Hilbert space

Ho = Lo(7v, Tt Xrs X1)

where the L, function is specified as a complex function of the four
variables.

» We may use the quantization scheme based on the coinvariant
equivalent classes defined by

Vg
» We then introduce inner product by the integral
v) = [ de (8, gv)
» This also ensures the constraints

/dg(\T’, Jig¥)=o0



» One may set 7, = 771 = 0 and x,—x; = 2¢,e=0 with g=x,+ /.
Thus we choose a gauge-fixed wavefunction as

V= 5(Tr)5(7'l)5(qrel)7/)(q)

» The inner product is reduced to
@) = [ dai(@)u(a)

» Our physical Hilbert space is reduced to L>(g). On this Hilbert
space the left right Hamiltonian becomes

2CH = 2CH,); = p* + €7

» p=—idq. [H,, H] =0. No factorization! [Harlow-Jafferis 18]



Liouville quantum-mechanics

» This is a Liouville quantum-mechanical system that involves an
exponential potential V(q) = e9.

» Note that the renormalized geodesic length between two boundary
points 7; (= 0) and 7, (= 0) is given by

2 Tr—Ti
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Eigenvalue problem

» The left side is unbounded and the spectrum becomes of course
continuous. Hence the density of state is ill defined.

» The corresponding eigenvalue problem

2
Hs(q) = 5 vs(a) (s € [0.0)
can be solved by

2
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» This satisfies the scattering normalization

/ " dq v (q)s (q) = 5(s — <)

— 00



» In the scattering regime of g — —oo, the wavefunction behaves as

r( 215) isq —isq
Ve e (¢ TR

where the reflection amplitude may be identified as R(s) = ﬁg_z;s))

» In the forbidden region of g — oo (a small separation limit), the
wavefunction decays doubly-exponentially as

T —2e9/2
/(Z)S(q) — Ns 4eq/2 €

V)




Disk partition function Zp 4

>

»

The relevant density of states is basically one-sided quantity
whereas our physical Hilbert space is inherently two-sided.

In this respect, currently there is no well-defined procedure
computing the disk partition function based on the two-sided
description. One can follow the proposal by [Lin-Maldacena-Rozenberg-Shan, 22]
. _By
Z(B) o< lim (gc|e™ 2" (= 2H)|qc)
ge—>o0
In this two-sided picture, one starts the evolution from an initial

geodesic connecting two slightly separated boundary points
somewhere on the bottom side. Namely WV, = 6(g — q.).

Basically the evolution is based on the propagator with an
appropriate initial state, which defines the path integral
computation in the two-sided picture.



» With this regularization, one finds
1 oo
Zgisk () o quan W(Qc)ﬁ /o ds ssinh 27rs e %

where

W(q) = 4r e—4e?=a/2

» The disk partition function may be identified as

Zgisk(B) = tre PP =

2
d —PEE) = 7 [Stanford Witten 17
/ spuT(s) e 4\f52 ———e’# [Stanford Witten 17]

where p 7 (E) = % sinh 27v/E by an inverse Laplace transform.




Disk correlation function ( g =0, n = 1) + double-trumpet (g =0, n

» Euclidean disk correlation function can be computed using the
two-sided picture. The result agrees with those of the Euclidean
path integral [Penington, Witten].

» For the double trumpet geometries, purely two-sided description is
not known. The result from Euclidean gravitational path integral is
known. Two trumpets with size b and integrations. — Z> ¢

B B2 = [ dbdr 1
| b b



SSS duality—a review

» The matrix model partition function Z (for an N x N Hermitian
matrix H) is given by

zZ = /dH e—NtrU(H)

» In the matrix model, it is convenient to introduce the so-called

resolvent 1

E—-H
which is related to the density of states as

R(E) =tr

R(E +ie) — R(E — ie) = —2mip(E)

» Here, the density of states is defined by

N
p(E)=trd(E—H)=> 6(E-)), Z=tre
j=1

where \; are the eigenvalues of the matrix H.



Double-scaling limit and genus expansions

» Taking into account the Vandermonde factor in the Hermitian
matrix model, the large N saddle point equation is given by

U'(E) = %][dA (E(j)x)

» As a specific JT density of states, SSS suggested the following
expression:

650 ) 2a
p(E,a):4—71_25|nh2m/E(17E/23), N:/0 dEp(E, a)

which determines U(E, a) from the saddle point equation.

» The double-scaling limit is defined by N — oo and a — oo, while
keeping e> finite (e~ is the level spacing! ). This leads to

Jim p(E, a) = pyr(E)



Topological genus expansion
0B B

» The connected part of n resolvents (the n connected boundaries in
the geometric side) is encoded in the topological expansion

(R(E1) -+ R(En))conn = Z e>(@-26=n) Rg.n(E1,- -+, Ep)
g=0

» This may be rewritten in terms of the correlators of the partition
functions (Z(51),- -+ , Z(8n))conn-
» The genus zero resolvant

R071(E) =y = —WiﬁJT(S = \/E)

gives us the so-called spectral curve of the matrix model. This plays
the role of initial data for the topological recursion relation of the
resolvent correlators. — Full perturvation theory!



JT-SSS correspondence

Z1,3(P1, B, B3) =

» These correlators are known to satisfy specific topological recursion
relations and then related to Weil-Petersson volume of the moduli
space of a genus g surface with n geodesic boundaries of length
by, -, by

» According to the SSS duality, all such correlators can be determined
completely by two initial inputs: disk partition function Zy;s(8) and
trumpet partition function Zyympet(53, b)-

» Both of these quantities are computed from Schwarzian boundary
wiggles in Euclidean pure JT gravity. — A precise agreement!



Left confining potential

>

>

>

v(s)

e
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The needs for the left confining potential may be argued in the
following ways.

First of all, the spectrum is continuous, which is in contradiction
with the finite density of states with the finite level spacing.

Note the complexity operator may be identified with £,., = —q
where £, is the geodesic length. With the Liouville Hamiltonian,
we have

d2
F(thd = —2(eM) g

where we use the TFD state as an initial states.



Confining Potential in Lorentzian picture
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» As /.., = —q becomes large, the force in the right side becomes
negligible and

gren = _<q>tfd ~ Cl t

with C; to be an O(1) positive coefficient. Even including the
perturbative and nonperturbative contributions the above behaviors
continue until t < e%.

» |t was further shown that [iiesiu, Mezei and Sarosi 21]

éren = _<q>tfd — eso C2

as t > e where G, is another O(1) positive coefficient, which has
a nonperturbative nature and universal for any QM with a discrete
spectrum.



Left confining potential W
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» With the confining potential the spectrum naturally becomes
discrete. We assume

V(q) = e+ W(q)

and determine the form of W explicitly.

» The left confining potential W(q) becomes O(1) only when
lren = —q becomes of O(e>).

> As e goes to infinity, the effect of the confining potential
disappears completely leading to the continuous spectrum.



Confining potential W
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» Let us obtain the shape of the left-confining potential W which
reproduce the desired JT density of states

1
pir(E) = e*p(E), p(E) = 2.2 Sinh2nvE
s

» The density of states in the semiclassical limit with the left right
confining potential is given by

1 d g+ .
—= [ daVE - V(q) = e*p(E)

ndE J,

where the left and right turning points g+ are defined by the
relation E = V(g4 ).



Left Confining Potential

v<g)
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» Now let us consider the potential of the form
V(g) = e+ W(X(q))
with
X(q) =e > [log(1+ e 97%) + v(q)]

without loss of any generality. a, v(q) ~ O(1).
» One then finds g, = O(1) and g_ = —O(e™).
» Therefore we get

1i/0 " dx\/E = W(X) = H(E)

m dE
where W(Xp) = E. Abel’s first integrall



JT solution to string equation

» This is solved by

21X = /W(X)h(2m/W(X))

which is the JT solution to the “string equation”.

» For small X, one finds
W(X) =2X + 0(X?)
» For the large X,
1 2
W(X) = [2 In ((277)3/2X)] (14 O(Inln X/1n X))
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Formulation of the string equation

» With the technique of orthogonal polynomials, one can get a new
formulation of MM perturbation theory with a fictitious quantum
system

@ey- [ " dE(p(E))eF = / " dy (yle )

where H = —h?02 + u(y) with h = e™.
» Now in the semiclassical limit with 2 — 0, one finds

1 1
p(E)Z%/_m dyi\/m

» With p(E) = pyr(E) and = 0, one finds

y+ \%?/1(277\/70) =0

which agrees with our equation with the replacement —y — X and
uo(y) = W(X).



The QM is unphysical!

Uo ()
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» This quantum mechanics problem is rather unconventional and
unphysical.

> Note one needs the relation

| o= [ aeiiel

the eigenvalue problem for Hi(y, E) = Ey(y, E) in the
conventional framework of quantum mechanics must be
supplemented by a self-adjoint boundary condition at y = p, which
is, in fact, NOT the case here.



This QM is unphysical!

Us (Y
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» |If a boundary condition or some wall potential were imposed, the

spectrum would become discrete, as the configuration space would
then be confined to the region y € (—oo, p1).

» However, it is clear that E is continuous because there is no right
confining potential.



Krylov-Complexity Dynamics

» Krylov spread complexity: C — Co = (hen) = —(q)

» We can take the thermofield double state
1 (B
B = —= 3 0.

as an initial state.
» We have

jt< Vird = —i([q, H]) tta = 2(P)tr

%<p>tfd = —i{[p, H)) et = — (V") ta

» One has a cancellation in the late time (t > e>)

2<P}tfd = _i<[q7 H]>tfd
! -4 it(Em—E,
=3 E e 2 (EntEn) oit(En—En) (E . Y(m, m|g|n, n) ~ 0



Krylov spread complexity
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» |Left panel: For N x N Gaussian ensemble, we depict the time
evolution of the complexity. One can see the patterns of
ramp-peak-slope-plateau.

» We show that C = ¢,, = —(q) follows the basically the same
pattern with the confining potential adding the random potential
part. (See the right panell)



Higher genus contributions 4 higher dimensions?

» The theory will be defined with the ensemble average
(An) = / daDv P(v,a) \p(v,a) (n=1,2,---)
(v,a)

with the weight P(v, a). These weight should be determined by the
original gravity theory or the matrix theory.

» For the higher genus contributions, further work is necessary.

» This should be generalized to higher dimensions since the concept
of complexity (~ wormhole volume) is universal!

Thanks a lot for your attention!



