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Issues

Canonical quantization of gravity theories:

• Lorentzian approach vs Euclidean path integral.
• Diffeo (gauge) symmetries.
• Discrete bulk spectrum is essential for the finiteness of entropy.
[In collaboration with CJ Kim & SH Yi]



JT Gravity dual to [Saad-Shenker-Stanford] Matrix Model

▶ The AdS2 dilaton gravity is consisting of
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▶ The equations of motion read

R + 2 = 0 (→ AdS2 with arbitrary genus g )

∇a∇bϕ− gab∇2ϕ+ gabϕ = 0



▶ The leading-order (g = 0) geometry is given by the gobal AdS2

ds2 =
ℓ2

cos2 µ

(
−dτ 2 + dµ2

)
where the coordinate µ is ranged from
−π/2 to +π/2. (Two sided!)

▶ The vacuum (BH) solution for the dilaton field is given by

ϕ = ϕ̄ L
cos τ

cosµ
= ϕ̄ r

▶ Make the coordinate transformation

r

L
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cos τ
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Lt
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Two-sided black holes

▶ One is led to the corresponding AdS Rindler metric and the dilaton
field:

ds2 = − r2 − L2

ℓ2
dt2 +

ℓ2

r2 − L2
dr2

ϕ = ϕ̄ r

The time t (= u) runs over (−∞,∞).

▶ The singularity is determined by Φ2 = ϕ0 + ϕ = 0 where Φ2 plays
the role of radius squared of the transverse space from the viewpoint
of the dimensional reduction from the higher dimensions as in

ds24 = ds2AdS2
+ r20 Φ

2(dθ2 + sin2θdφ2)

▶ The geometry is intrinsically two-sided!



Eclidean disk

▶ The Euclidean disk metric becomes

ds2 =
ℓ2

cos2 µ

(
dτ 2E + dµ2

)
where −∞ < τE <∞. This Euclidean disk may have two-sided
interpretation.

▶ From the Rindler, the Euclidean disk metric becomes

ds2 = dρ2 + sinh2 ρ dt2E

where r = cosh ρ and tE ∼ tE + 2π.



Schwarzian description of the bulk – Bd particle picture

▶ Any bulk fluctuation can be reflected through the boundary
fluctuation: This is nothing but the mode of reparameterization.
These fluctuations are described by the Schwarzian dynamics.

▶ 1. First we take the dilaton as the size
of transverse space and introduce a
cut-off trajectory in term of the dilaton

ϕ|∂M = ϕ̄
1

ϵ
(= ϕ̄ r)

▶ 2. The induced metric at the cut off
trajectory will be fixed by

ds2|∂M = − 1

ϵ2
du2 ∼ −

(
τ ′(u) du

cosµ∂M(u)

)2

+ · · ·

▶ u is the physical (gauge-fixed) boundary time running from
(−∞,+∞). The remaining degrees are given by τr (u) and τl(u).



▶ Using the rules, evaluate the on shell gravity action. This leads to

S = −C
∫

du

[{
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2
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}
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}]
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f ′′
2
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+

(
f ′′

f ′

)′

where C is the coupling with C = ϕ̄ (= 1/2).

▶ For our black hole spacetime, the Schwarzian equation of motion is
solved by

sin τ(u) = tanh
2π

β
u , τ ′(u) =

2π

β

1

cosh 2πu
β

where we set τl = τr = τ(u).

Therefore τ coordinate along the
cut-off is ranged from −π/2 to
+π/2.



Quantization [Penington-Witten 23]

▶ Let us try to quantize the L-R system which involves higher
derivative terms

S =

∫
du Lr +

∫
du Ll , Lr/l =

C
2

[(τ ′′r/l
τ ′r/l

)2
− τ ′2r/l

]
Introducing the Lagrange multiplier term, one may rewrite the
above Lagrangian as

Lr/l =
C
2
χ′2
r/l −

1

2C
e2χr/l + pτr/l

(
τ ′r/l −

1

C
eχr/l

)
⇒ Then by introducing the pχr/l

conjugated to the variable χr/l , one
finds left right Hamiltonians

Lr/l = pτr/l τ
′
r/l + pχr/l

χ′
r/l − Hr/l

Hr/l =
1

2C

[
p2χr/l

+ 2pτr/l e
χr/l + e2χr/l

]
▶ Note eχr/l = Cτ ′r/l = ϕ∂M cosµ∂M(u) ∼ O( 1ϵ · ϵ).



SL2 gauge symmetries

▶ The linear dependence in pτ tells us that the Hamiltonian is
unbounded from below. However (large diffeo) gauge symmetries
will make the system well defined.

▶ SL2 (∼ SO(2,1)) gauge symmetries: For this we use the embedding
space coordinates of ads2: −Y 2

1 + Y 2
2 + Y 3

3 = 1 with

Y1 = tanµ, Y2 =
cos τ

cosµ
, Y3 =

sin τ

cosµ

⇒ SL2 rotation is an isometric
transformation with Killing vectors
[Lin-Maldacena-Zhao 19]

ξ1 = −∂τ (τ -translation)

ξ2 = − cos τ sinµ∂τ − sin τ cosµ∂µ (boost)

ξ3 = − sin τ sinµ∂τ + cos τ cosµ∂µ (scaling)



▶ The SL2 gauge symmetries are generated by

J̃i = Jbulki (bulk) + J ri (bd-R) + J li (bd-L)

▶ Classically, one has the corresponding constraints, J̃i = 0, and
imposing these leads to consistent solutions of the left-right
boundary dynamics.

▶ Quantum mechanically, imposing the constraints properly on the
wave function

J̃i Ψ = 0

leads to the full quantization of our gravity theory.



Gauge fixing and constraints [Penington-Witten 23]

▶ Our starting point is the unconstrained Hilbert space

H0 = L2(τr , τl , χr , χl)

where the L2 function is specified as a complex function of the four
variables.

▶ We may use the quantization scheme based on the coinvariant
equivalent classes defined by

Ψ ∼= gΨ

▶ We then introduce inner product by the integral

⟨Ψ̃|Ψ⟩ =
∫

dg (Ψ̃, gΨ)

▶ This also ensures the constraints∫
dg(Ψ̃, J̃i gΨ) ∼= 0



▶ One may set τr = τl = 0 and χr–χl = 2qrel =0 with q=χr+χl .
Thus we choose a gauge-fixed wavefunction as

Ψ = δ(τr )δ(τl)δ(qrel)ψ(q)

▶ The inner product is reduced to

⟨Ψ̃|Ψ⟩ =
∫

dq ψ̃∗(q)ψ(q)

▶ Our physical Hilbert space is reduced to L2(q). On this Hilbert
space the left right Hamiltonian becomes

2CH = 2CHr/l = p2 + eq

▶ p = −i∂q. [Hr ,Hl ] = 0. No factorization! [Harlow-Jafferis 18]



Liouville quantum-mechanics

▶ This is a Liouville quantum-mechanical system that involves an
exponential potential V (q) = eq.

▶ Note that the renormalized geodesic length between two boundary
points τl (= 0) and τr (= 0) is given by

ℓren ≡ ℓbare (≥ 0)−����:∞ϵ
ln 2ϕ|r −����:∞ϵ

ln 2ϕ|l = ln

(
cos2 τr−τl

2

C2τ ′l τ
′
r

)
= −q



Eigenvalue problem

▶ The left side is unbounded and the spectrum becomes of course
continuous. Hence the density of state is ill defined.

▶ The corresponding eigenvalue problem

H ψs(q) =
s2

2C
ψs(q) (s ∈ [0,∞))

can be solved by

ψs(q) = Ns K2is(2e
q/2) , Ns =

2

π
(s sinh 2πs)

1
2

▶ This satisfies the scattering normalization∫ ∞

−∞
dq ψ∗

s (q)ψs′(q) = δ(s − s ′)



▶ In the scattering regime of q → −∞, the wavefunction behaves as

ψs →
Γ(−2is)√

2π |Γ(−2is)|
(
e isq + R(s)e−isq

)
where the reflection amplitude may be identified as R(s) = Γ( 2is )

Γ(−2is) .

▶ In the forbidden region of q → ∞ (a small separation limit), the
wavefunction decays doubly-exponentially as

ψs(q) → Ns

√
π

4eq/2
e−2eq/2



Disk partition function Z0,1

▶ The relevant density of states is basically one-sided quantity
whereas our physical Hilbert space is inherently two-sided.

▶ In this respect, currently there is no well-defined procedure
computing the disk partition function based on the two-sided
description. One can follow the proposal by [Lin-Maldacena-Rozenberg-Shan, 22]

Z (β) ∝ lim
qc→∞

⟨qc | e−
β
2 Htot (= 2H)|qc⟩

▶ In this two-sided picture, one starts the evolution from an initial
geodesic connecting two slightly separated boundary points
somewhere on the bottom side. Namely ΨI = δ(q − qc).

▶ Basically the evolution is based on the propagator with an
appropriate initial state, which defines the path integral
computation in the two-sided picture.



▶ With this regularization, one finds

Zdisk(β) ∝ lim
qc→∞

W (qc)
1

2π2

∫ ∞

0

ds s sinh 2πs e−βs2

where

W (q) = 4π e−4eq/2−q/2

▶ The disk partition function may be identified as

Zdisk(β) = tr e−βH =
eS0

2π2

∫ ∞

0

ds s sinh 2πs e−βs2

=

∫ ∞

0

dsρJT (s) e
−βE(s) =

eS0

4
√
πβ

3
2

e
π2

β [Stanford Witten 17]

where ρJT (E ) =
eS0
4π2 sinh 2π

√
E by an inverse Laplace transform.



Disk correlation function ( g = 0, n = 1) + double-trumpet (g = 0, n = 2)

▶ Euclidean disk correlation function can be computed using the
two-sided picture. The result agrees with those of the Euclidean
path integral [Penington,Witten].

▶ For the double trumpet geometries, purely two-sided description is
not known. The result from Euclidean gravitational path integral is
known. Two trumpets with size b and integrations. → Z2,0



SSS duality–a review

▶ The matrix model partition function Z (for an N × N Hermitian
matrix H) is given by

Z =

∫
dH e−NtrU(H)

▶ In the matrix model, it is convenient to introduce the so-called
resolvent

R(E ) = tr
1

E − H

which is related to the density of states as

R(E + iϵ)− R(E − iϵ) = −2πiρ(E )

▶ Here, the density of states is defined by

ρ(E ) ≡ tr δ(E − H) =
N∑
j=1

δ(E − λj), Z = tr e−βH

where λi are the eigenvalues of the matrix H.



Double-scaling limit and genus expansions

▶ Taking into account the Vandermonde factor in the Hermitian
matrix model, the large N saddle point equation is given by

U ′(E ) =
2

N
−
∫

dλ
ρ(λ)

(E − λ)

▶ As a specific JT density of states, SSS suggested the following
expression:

ρ(E , a) =
eS0

4π2
sinh 2π

√
E
(
1− E/2a

)
, N =

∫ 2a

0

dEρ(E , a)

which determines U(E , a) from the saddle point equation.

▶ The double-scaling limit is defined by N → ∞ and a → ∞, while
keeping eS0 finite (e−S0 is the level spacing! ). This leads to

lim
a→∞

ρ(E , a) = ρJT (E )



Topological genus expansion

▶ The connected part of n resolvents (the n connected boundaries in
the geometric side) is encoded in the topological expansion

⟨R(E1) · · ·R(En)⟩conn ≃
∞∑
g=0

eS0(2−2g−n)Rg ,n(E1, · · · ,En)

▶ This may be rewritten in terms of the correlators of the partition
functions ⟨Z (β1), · · · ,Z (βn)⟩conn.

▶ The genus zero resolvant

R0,1(E ) = y = −πi ρ̂JT (s =
√
E )

gives us the so-called spectral curve of the matrix model. This plays
the role of initial data for the topological recursion relation of the
resolvent correlators. → Full perturvation theory!



JT-SSS correspondence

▶ These correlators are known to satisfy specific topological recursion
relations and then related to Weil-Petersson volume of the moduli
space of a genus g surface with n geodesic boundaries of length
b1, · · · , bn.

▶ According to the SSS duality, all such correlators can be determined
completely by two initial inputs: disk partition function Zdisk(β) and
trumpet partition function Ztrumpet(β, b).

▶ Both of these quantities are computed from Schwarzian boundary
wiggles in Euclidean pure JT gravity. → A precise agreement!



Left confining potential

▶ The needs for the left confining potential may be argued in the
following ways.

▶ First of all, the spectrum is continuous, which is in contradiction
with the finite density of states with the finite level spacing.

▶ Note the complexity operator may be identified with ℓren = −q
where ℓren is the geodesic length. With the Liouville Hamiltonian,
we have

d2

dt2
⟨q⟩tfd = −2⟨eq⟩tfd

where we use the TFD state as an initial states.



Confining Potential in Lorentzian picture

▶ As ℓren = −q becomes large, the force in the right side becomes
negligible and

ℓren = −⟨q⟩tfd ∼ C1 t

with C1 to be an O(1) positive coefficient. Even including the
perturbative and nonperturbative contributions the above behaviors
continue until t ≪ eS0 .

▶ It was further shown that [Iliesiu, Mezei and Sarosi 21]

ℓren = −⟨q⟩tfd → eS0C2

as t ≫ eS0 where C2 is another O(1) positive coefficient, which has
a nonperturbative nature and universal for any QM with a discrete
spectrum.



Left confining potential W

▶ With the confining potential the spectrum naturally becomes
discrete. We assume

V (q) = eq +W (q)

and determine the form of W explicitly.

▶ The left confining potential W (q) becomes O(1) only when
ℓren = −q becomes of O(eS0).

▶ As eS0 goes to infinity, the effect of the confining potential
disappears completely leading to the continuous spectrum.



Confining potential W

▶ Let us obtain the shape of the left-confining potential W which
reproduce the desired JT density of states

ρJT (E ) = eS0 ρ̂(E ), ρ̂(E ) =
1

4π2
sinh 2π

√
E

▶ The density of states in the semiclassical limit with the left right
confining potential is given by

1

π

d

dE

∫ q+

q−

dq
√
E − V (q) = eS0 ρ̂(E )

where the left and right turning points q∓ are defined by the
relation E = V (q±).



Left Confining Potential

▶ Now let us consider the potential of the form

V (q) = eq +W (X (q))

with

X (q) = e−S0
[
log(1 + e−q−a) + v(q)

]
without loss of any generality. a, v(q) ∼ O(1).

▶ One then finds q+ = O(1) and q− = −O(eS0).
▶ Therefore we get

1

π

d

dE

∫ X0

0

dX
√
E −W (X ) = ρ̂(E )

where W (X0) = E . Abel’s first integral!



JT solution to string equation [Okuyama and Sakai 19] [Johnson and Rosso 20] [Johnson 22]

▶ This is solved by

2πX =
√
W (X )I1(2π

√
W (X ))

which is the JT solution to the “string equation”.

▶ For small X , one finds

W (X ) = 2X + O(X 2)

▶ For the large X ,

W (X ) =

[
1

2π
ln
(
(2π)3/2X

)]2
(1 + O(ln lnX/ lnX ))



Formulation of the string equation [Johnson 22]

▶ With the technique of orthogonal polynomials, one can get a new
formulation of MM perturbation theory with a fictitious quantum
system

⟨Z (β)⟩ =
∫ ∞

−∞
dE ⟨ρ(E )⟩e−βE =

∫ µ

−∞
dy ⟨y |e−βH|y⟩

where H = −ℏ2∂2y + u(y) with ℏ = e−S0 .

▶ Now in the semiclassical limit with ℏ → 0, one finds

ρ(E ) =
1

2πℏ

∫ µ

−∞
dy

1√
E − u0(y)

▶ With ρ(E ) = ρJT (E ) and µ = 0, one finds

y +

√
u0

2π
I1(2π

√
u0) = 0

which agrees with our equation with the replacement −y → X and
u0(y) → W (X ).



The QM is unphysical!

▶ This quantum mechanics problem is rather unconventional and
unphysical.

▶ Note one needs the relation∫ µ

−∞
dy |y⟩⟨y | =

∫ ∞

−∞
dE |E ⟩⟨E |

the eigenvalue problem for Hψ(y ,E ) = Eψ(y ,E ) in the
conventional framework of quantum mechanics must be
supplemented by a self-adjoint boundary condition at y = µ, which
is, in fact, NOT the case here.



This QM is unphysical!

▶ If a boundary condition or some wall potential were imposed, the
spectrum would become discrete, as the configuration space would
then be confined to the region y ∈ (−∞, µ).

▶ However, it is clear that E is continuous because there is no right
confining potential.



Krylov-Complexity Dynamics [Balasubramanian,caputa, Magan,Wu 22]

▶ Krylov spread complexity: C − C0 = ⟨lren⟩ = −⟨q⟩
▶ We can take the thermofield double state

|ψ(t)⟩tfd =
1√
Z

∑
n

e−( β
2 +it)En |n, n⟩

as an initial state.

▶ We have

d

dt
⟨q⟩tfd = −i⟨[q,H]⟩tfd = 2⟨p⟩tfd

d

dt
⟨p⟩tfd = −i⟨[p,H]⟩tfd = −⟨V ′⟩tfd

▶ One has a cancellation in the late time (t ≫ eS0)

2⟨p⟩tfd = −i⟨[q,H]⟩tfd
=

i

Z

∑
m,n

e−
β
2 (Em+En)e it(Em−En)(Em − En)⟨m,m|q|n, n⟩ ≃ 0



Krylov spread complexity Balasubramanian, Kar, Li, Parrikar,2022

▶ Left panel: For N × N Gaussian ensemble, we depict the time
evolution of the complexity. One can see the patterns of
ramp-peak-slope-plateau.

▶ We show that C = ℓren = −⟨q⟩ follows the basically the same
pattern with the confining potential adding the random potential
part. (See the right panel!)



Higher genus contributions + higher dimensions?

▶ The theory will be defined with the ensemble average

⟨λn⟩ =
∫
(v ,a)

daDv P(v , a)λn(v , a) (n = 1, 2, · · · )

with the weight P(v , a). These weight should be determined by the
original gravity theory or the matrix theory.

▶ For the higher genus contributions, further work is necessary.

▶ This should be generalized to higher dimensions since the concept
of complexity (∼ wormhole volume) is universal!

Thanks a lot for your attention!


