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Background and Motivation

Recently, there has been a renewed interest in studying state and operator dynamics in Krylov space.  This has 
been a fruitful pursuit, leading to novel measures of state and operator complexity and new avenues to study 
quantum chaos in many-body systems and holography.

Relation to out-of-time-order correlators (OTOCs) and a new conjectured universal chaos bound (universal 
operator growth hypothesis: [Parker, Cao, Avdoshkin, Scaffidi, Altman (2019)]). 

Connections with holographic complexity in the context of DSSYK/JT gravity ([Rabinovici, Sánchez-Garrido, 
Shir, Sonner (2023)], [Balasubramanian, Magan Nandi, Wu (2024)]) and momentum-complexity growth rate 
correspondence ([Caputa, Chen, McDonald, Simón, Strittmatter (2024)]). 

New tools to study long-time quantum chaos and encoding of RMT behavior (e.g. spectral rigidity) 
([Balasubramanian, Magan, Wu (2022, 2023)], [Erdmenger, Jian, Xian (2023)], [Alishahiha, Banerjee, Javad 
Vasli (2024),…]). 

New connections between quantum chaos and quantum computation ([Craps, Evnin, Pascuzzi (2023)]). 

New approaches to study operator growth in open quantum systems ([Bhattacharya, Nandy, Nath, Sahu 
(2022, 2023), Bhattacharjee, Nandy, Pathak (2023), Nandy, Pathak, Tezuka (2024),…])



Krylov state complexity, also known as spread complexity [Balasubramanian, Caputa, Magan, Wu (2022)], 
has played a central role in the previous developments.
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This Talk

In this talk, I will discuss Krylov state complexity and its higher-order generalizations in the context of quantum 
quenches involving random matrices.
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Basic idea: study the time evolution of states in dynamical quantum-mechanical systems. For a time-
independent Hamiltonian :H

|ψ(t)⟩ = e−iHt |ψ0⟩ ≡ ∑
n≥0

(−it)n

n!
Hn |ψ0⟩ = ∑

n≥0

(−it)n

n!
|ψn⟩

The Lanczos Algorithm

The states  form a basis of the Krylov subspace  associated with , a subspace of the full 
Hilbert space .

|ψn⟩ := Hn |ψ0⟩ 𝒦 |ψ0⟩
ℋ

Using the Lanczos algorithm, it is possible to construct an orthonormal basis (Krylov basis ) in Krylov 
subspace  which brings the Hamiltonian  to a Hessenberg (or tridiagonal) form ([Viswanath & Müller (1994)]).

K
𝒦 H

|ψn⟩ := Hn |ψ0⟩{ |ψ0⟩ , H}

K := { |Kn⟩ }Initial state  
and dynamics

Unnormalized Basis  
in Krylov space 𝒦

Lanczos algorithm Krylov basis

(with  and 
)

|K0⟩ = |ψ0⟩
b0 = 0)

⟨Km |Kn⟩ = δmn

( |ψ0⟩ ≡ |ψ(t = 0)⟩)
i∂t |ψ(t)⟩ = H |ψ(t)⟩

|An+1⟩ = (H − an) |Kn⟩ − bn |Kn−1⟩

|Kn⟩ = b−1
n |An⟩

bn := ⟨An |An⟩1/2 an := ⟨Kn |H |Kn⟩
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{

⟹

(n > 0)



⟨Km |H |Kn⟩ ∼

a0 b1 0 0 ⋯
b1 a1 b2 0 ⋯
0 b2 a2 b3 ⋯
0 0 b3 a3 ⋱
⋮ ⋮ ⋮ ⋱ ⋱

⟨ψm |H |ψn⟩

Lanczos algorithm

In the Krylov basis , the coefficients of the time-evolved state  have the interpretation of 
probability amplitudes:

K {ϕn(t)} |ψ(t)⟩

The Lanczos algorithm also yields the Lanczos coefficients {an , bn}

∑
n≥0

|ϕn(t) |2 ≡ ∑
n≥0

pK(n, t) = 1 ∀t
|ψ(t)⟩ = ∑

n≥0

ϕn(t) |Kn⟩
ϕn(t) := ⟨Kn |ψ(t)⟩ = ⟨Kn |e−iHt |ψ0⟩ ∈ ℂ
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{

∼

*11 *12 *13 *14 ⋯
*21 *22 *23 *24 ⋯
*31 *32 *33 *34 ⋯
*41 *42 *43 *44 ⋯
⋮ ⋮ ⋮ ⋮ ⋱
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(orthonormal basis)(in general, not an
orthonormal basis)

and the Schrödinger equation describes the hopping of a particle on a -dimensional lattice (the Krylov chain):1

ϕn

bn+1

an

ϕn+1 ϕn+2ϕn−1ϕn−2

bn

ϕ0(t) := ⟨ψ0 |ψ(t)⟩

i∂tϕn(t) = anϕn(t) + bn+1ϕn+1(t) + bnϕn−1(t)

(Survival Amplitude)Key:

The Lanczos Algorithm



Krylov State Complexity

Initially, the state is localized in Krylov space . During time evolution, it “spreads” in Krylov space, 
acquiring contributions from more Krylov basis states .

|ψ0⟩ = |K0⟩
|Kn⟩

Cψ(t) := ∑
n≥0

n |⟨Kn |ψ(t)⟩ |2 = ∑
n≥0

n pK(n, t) = ∑
n≥0

n |ϕn(t) |2

(3/20)

A way of measuring the spread of  in the Krylov space  is by computing the average position of the 
time-evolved state  in the Krylov basis :

|ψ0⟩ 𝒦
|ψ(t)⟩ K

⟨ ̂nψ⟩t := ⟨ψ(t) | ̂nψ |ψ(t)⟩ = ⟨ψ0 | ̂nψ(t) |ψ0⟩ = ∑
n≥0

n |ϕn(t) |2 ≡ Cψ(t) ( ̂nψ(t) = eitH ̂nψe−itH)

This is the Krylov state complexity of . One can also view it as the expectation value of the spreading 
operator , given by  in the time-evolved state 

|ψ0⟩
̂nψ : 𝒦 → 𝒦 ̂nψ = ∑

n≥0

n |Kn⟩⟨Kn | |ψ(t)⟩



Cost Function Interpretation of Krylov State Complexity

In [Balasubramanian, Caputa, Magan, Wu (2022)] it was argued that the Krylov basis , generated by applying 
the Lanczos algorithm to  , minimizes the complexity cost functional

K
{ |ψn⟩ = Hn |ψ0⟩}n≥0

over all possible choices of complete, orthonormal, and ordered bases , namelyB = { |Bn⟩}n≥0

CB(t) = ∑
n≥0

n |⟨Bn |ψ(t)⟩ |2 = ∑
n≥0

n pB(n, t)

This was shown to hold over a finite interval of time around  in continuous time evolution, using arguments 
related to the Taylor series coefficients of , as well as for all times in discrete time evolution implemented 
by sequences of unitaries.

t = 0
CB(t)

(4/20)

Cψ(t) = min
B

{CB(t)}



Krylov state complexity of the TFD state

Krylov state complexity can be defined for any state . However, one interesting state to consider as the initial 
state is the TFD state. This allows for comparison with other spectral quantities, such as the spectral form factor 
(SFF). 

|ψ0⟩

In this case, the first probability amplitude  (given by the return amplitude of the TFD state) is directly 
related to the SFF:

ϕ0(t)

ϕ0(t) := ⟨TFD(β) |TFD(β + 2it)⟩ =
Z(β + it)

Z(β)
∼ SFF(β, t)

The Krylov state complexity of the TFD state depends only on the spectrum of the theory  and .{En , |n⟩} β

• At early times:  Cψ(t) ≈ b2
1 t2 • Saturation value:                lim

t→∞
Cψ(t) =

d − 1
2

(5/20)

|ψ0⟩ = |TFD(β)⟩ :=
1
Z(β) ∑

n

e− βEn
2 |n⟩ ⊗ |n⟩ (Z(β) = tr (e−βH) = ∑

n

e−βEn)

SFF(β, t) :=
|Z(β + it) |2

|Z(β) |2 =
1

|Z(β) |2 ∑
n,m

e−β(En+Em)eit(En−Em)

( Hilbert space dim.)d =(For any  )|ψ0⟩ (For .)|ψ0⟩ = |TFD(β = 0)⟩



Signatures of Quantum Chaos

In [Balasubramanian, et al. (2022)] it was shown that the Krylov state complexity of the TFD state in Gaussian 
random matrix ensembles (GOE, GUE, GSE) has a prototypical shape akin to that of the spectral form factor 
(SFF):
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Slope

Dip
Ramp

Plateau

([Cotler, Gur-Ari, Hanada, Polchinski, Saad,  
Schenker, Stanford Streicher, Tezuka (2018)])

lo
g(

SF
F(

β,
t))

([Balasubramanian, Caputa, Magan, Wu (2022)])

Krylov state complexity of the time-evolved 
TFD state for realizations of GUE matrices of 
size  at finite .d ∼ O(103) β

In RMTs

tdip ∼ O( d)
tpeak ≲ O(d)

The ramp in the SFF 
arises from spectral 
rigidity.

Peak
Slope Plateau

Rise

C
(t)

/d

t/d



Signatures of Quantum Chaos

This observation has been reproduced in different settings, with the peak and subsequent slope before the 
plateau being the indication of energy-level repulsion and spectral rigidity.
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For example, in [Camargo, Huh, Jahnke, Jeong, Kim & Nishida (2024)] it was shown that for the  TFD state 
in the even-parity sector of the mixed-field Ising model in the chaotic regime for  spins:

β = 0
N = 12

tplateautdip

Krylov state complexity of TFD state SFF

tpeak

∼ t2

∼ t

where:   ,    ,  and       with   (c.f. RMTs where  ).tdip ∼ 𝒪(1) tplateau ∼ O(d) tdip < tpeak < tslope ≲ tplateau d ∼ O(103) tdip ∼ d

(log scale)
(log scale)

Rise
Slope

Dip Ramp

Plateau

Plateau

2405.11254

Peak
Slope

https://arxiv.org/abs/2405.11254


Some Questions

1. Is the rise-peak-slope-plateau structure present only for the Krylov complexity of the TFD state?

(8/20)

2. What information do the higher moments of the probability amplitudes have access to? {ϕn(t)}

3. When it appears, can we provide a (semi-)analytic understanding of the peak (i.e. time-scale and value)?

Initial-state dependence of Krylov state complexity

Information captured by the probability amplitudes

Mathematical origin of the peak

Random matrix quenches

Generalized Krylov state complexity

Continuum approximation in Gaussian RMTs



Generalized Spreading Operator (9/20)

Generalizations of the Krylov state complexity of the form 

with , can be seen as as arising from the expectation value of the generalized spreading operator 
, given by  in the time-evolved state 

m = 1,2,3,…
̂n(m)
ψ : 𝒦 → 𝒦 ̂n(m)

ψ = ∑
n≥0

nm |Kn⟩⟨Kn | |ψ(t)⟩

⟨ ̂n(m)
ψ ⟩t := ⟨ψ(t) | ̂n(m)

ψ |ψ(t)⟩ = ⟨ψ0 | ̂n(m)
ψ (t) |ψ0⟩ = C(m)

ψ (t)

C(m)
ψ (t) = ∑

n≥0

nm |⟨Kn |ψ(t)⟩ |2 = ∑
n≥0

nm |ϕn(t) |2

2412.16472

These were introduced in the context of the statistics of operator measurements in quantum mechanics [Fu, Pal, 
Pal & Kim (2024)]. Consider the generating functional  where  is an auxiliary parameter:G(η, t) η

G(η, t) := ∑
n≥0

eηn |ϕn(t) |2 dm G(η, t)
dηm

η=0
= ∑

n≥0

nm |ϕn(t) |2 ≡ C(m)
ψ (t) = ⟨ ̂n(m)

ψ ⟩t⟹

( ̂n(m)
ψ (t) = eitH ̂n(m)

ψ e−itH)

https://arxiv.org/abs/2412.16472


Statistics of the Spreading Operator (10/20)2412.16472

One can analytically continue the generating functional to complex values of  [Fu, Pal, Pal & Kim (2024)] η = − iu

G(−iu, t) = ∑
n≥0

e−iun |ϕn(t) |2 = ∑
m≥1

(−iu)m

m!
⟨ ̂n(m)

ψ ⟩t ≡ χ ̂n(u, t) ,

χ ̂n(u, t) = ⟨ψ0 |e−iu ̂nψ(t) |ψ0⟩ = ∑
m≥0

(−iu)m

m!
⟨ψ0 | ( ̂nψ(t))m |ψ0⟩ = ∑

n,m≥0

(−iu)m

m!
nm |ϕn(t) |2

where  is the characteristic function of the probability distribution  defined asχ ̂n(u, t) {ϕn(t)}

where   . The characteristic function  is the “Fourier transform” of the probability 
distribution  of the spreading operator 

̂n(m)
ψ (t) = eitH ̂n(m)

ψ e−itH χ ̂n(u, t)
P ̂n ̂nψ

P ̂n( j, t) = ∑
n≥0

|ϕn(t) |2 δ( j − n) χ ̂n(u, t) = ∫ dj e−iuj P ̂n( j, t)⟹

https://arxiv.org/abs/2412.16472


Higher-order Krylov state complexity (11/20)2412.16472

By similar arguments to the original work [Balasubramanian, et al. (2022)], the higher-order Krylov state 
complexities

C(m)
ψ (t) = ∑

n≥0

nm |ϕn(t) |2

are also measures of quantum complexity, in the sense that the Krylov basis  minimizes cost functionals of 
the form:

K

C(m)
B (t) = ∑

n≥0

nm |⟨Bn |ψ(t)⟩ |2 = ∑
n≥0

nm pB(n, t)

over all possible choices of complete, ordered, orthonormal bases .B

All of these have a universal early-time quadratic behaviour

However, any arbitrary linear combination of these quantities may not be the minimum in the Krylov basis. For 
example, the variance  is not a measure of the quantum complexity of  (in the above 
sense).

σ2
̂n(t) := ⟨ ̂n(2)

ψ ⟩ − ⟨ ̂nψ⟩2 |ψ(t)⟩

C(m)
ψ (t) ≈ b2

1 t2 ∑
n≥0

nmδn1 + 𝒪(t3)

https://arxiv.org/abs/2412.16472


Random Matrix Quenches

Consider a sudden quench protocol involving two random  matrices from a one parameter class of 
random matrices ( ) of the form ([Brandino, De Luca, Konik & Mussardo (2012)])

d × d
Hr(h)

Hr(h) = ( A hB
hB† C )

Quantum quenches provide a framework for investigating the non-equilibrium dynamics of closed, interacting 
quantum systems following a change in one or more of the system’s parameters.

Here, the matrices  are  symmetric matrices sampled from a normalized random matrix 
ensemble with measure

A , C (d/2) × (d/2)

μ(M) = exp (−
β̃d
4

tr (M2)) β̃ = 1 (GOE)
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{ β̃ = 2 (GUE)

In the GOE case, the  are real numbers drawn from a normal distribution with zero mean and variance .Bij 1/d

In the GUE case, the  are complex numbers  , where both  and  are independently drawn from a 
normal distribution with zero mean and variance .

Bij xij + iyij xij yij
1/(2d)

(Hr(h) ∼ Hd + hV )
(h breaks ℤ2 symm. of Hd )

e.g. Ising with 
transverse 
magnetic field

2412.16472 (12/20)
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 parameter of ⟨r⟩ Hr(h) (13/20)

One can compute the so-called r-parameter; a tool for detecting correlations in the energy spectrum. Defining 
the nearest-neighbor energy-spacings  for an ordered energy spectrum  , the ratiossn := En+1 − En {En}d

n=1

2412.16472

can be used to define the r-parameter; the average of these ratios:

rn := min { sn

sn−1
,

sn−1

sn }
⟨r⟩ =

1
d − 1

d−1

∑
n=1

rn

0.001 0.005 0.010 0.050 0.100 0.500 1

0.4

0.5

0.6

h

〈r
〉

0.001 0.005 0.010 0.050 0.100 0.500 1

0.4

0.5

0.6

h

〈r
〉

The r-parameter of  as a function of  for  realizations with :Hr(h) h 100 d = 1000

lim
h→0

⟨r(h)⟩ ≈ 0.42

⟨r⟩GOE ≈ 0.536

⟨r⟩Poisson ≈ 0.386

⟨r⟩GUE ≈ 0.603

 (GOE)β̃ = 1  (GUE)β̃ = 2

https://arxiv.org/abs/2412.16472


Random Matrix Quenches

The eigenstates of the pre-and post-quench Hamiltonians are completely random with respect to each other, as 
can be verified by computing the inverse participation ratio IPR( ),|n0⟩

This quench protocol provides a way to study the evolution of states that are not directly constructed from the 
eigenstates of the evolving Hamiltonian. Time evolution is implemented by the post-quench Hamiltonian H

t = 0 t > 0t < 0
t

Sudden 
quench H := Hr(1) = ( A B

B† C)H0 := Hr(−1) = ( A −B
−B† C )GOE (β̃ = 1)
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{GUE (β̃ = 2)
∈ GOE (β̃ = 1)
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{ GUE (β̃ = 2)
∈

Post-quenchPre-quench

IPR( |ψ0⟩) :=
1

∑n≥0 |⟨n |ψ0⟩ |4

H0 |n0⟩ = E0
n |n0⟩ H |n⟩ = En |n⟩
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Choices of Initial States |ψ0⟩ (15/20)2412.16472

Our goal is to study the evolution of the generalized spread complexities in such a quench protocol for different 
choices of the initial state : pre-quench TFD state , pre-quench ground state  and post-
quench TFD state :

|ψ0⟩ |TFD0(β = 0)⟩ |00⟩
|TFD(β = 0)⟩

1. For a realization of , find  and tridiagonalize  to find  .Hr(±1) |ψ0⟩ Hr(+1) HK
r (+1)

2. Compute  by expressing  and  in the Krylov basis:C(m)
ψ (t) = ⟨ψ0 | ̂n(m)

ψ (t) |ψ0⟩ |ψ0⟩ ̂n(m)
ψ (t)

C(m)
ψ (t) = (1,0,…,0) . eitHK

r (1) .

0 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 2m ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ dm

. e−itHK
r (1) . (1,0,…,0)T , HK

r (+1) =

a0 b1 0 0 ⋯
b1 a1 b2 0 ⋯
0 b2 a2 ⋱ ⋯
⋮ ⋮ ⋱ ⋱ bd−1

0 0 0 bd−1 ad−1

⟨Kn | ̂n(m)
ψ |Km⟩

<latexit sha1_base64="AJ2JguiG62BaTmEkYfW3ldG6Lv4=">AAAB6HicbZDLTgJBEEVrfCK+UJduOhITV2TG+FoS3bjERB4JTEhPUwMtPY9015gQwj/oyqg7v8cf8G9scBYK3tXpureTuhWkShpy3S9naXlldW29sFHc3Nre2S3t7TdMkmmBdZGoRLcCblDJGOskSWEr1cijQGEzGN5M/eYjaiOT+J5GKfoR78cylIKTHTU7KtBcYLdUdivuTGwRvBzKkKvWLX12eonIIoxJKG5M23NT8sdckxQKJ8VOZjDlYsj72LYY8wiNP56tO2HHYaIZDZDN3r+zYx4ZM4oCm4k4Dcy8Nx3+57UzCq/8sYzTjDAWNmK9MFOMEjZtzXpSoyA1ssCFlnZLJgbcVid7m6Kt782XXYTGacW7qJzfnZWr1/khCnAIR3ACHlxCFW6hBnUQMIRneIN358F5cl6c15/okpP/OYA/cj6+ATNDjSQ=</latexit> {⟨K0 | |K0⟩

<latexit sha1_base64="AJ2JguiG62BaTmEkYfW3ldG6Lv4=">AAAB6HicbZDLTgJBEEVrfCK+UJduOhITV2TG+FoS3bjERB4JTEhPUwMtPY9015gQwj/oyqg7v8cf8G9scBYK3tXpureTuhWkShpy3S9naXlldW29sFHc3Nre2S3t7TdMkmmBdZGoRLcCblDJGOskSWEr1cijQGEzGN5M/eYjaiOT+J5GKfoR78cylIKTHTU7KtBcYLdUdivuTGwRvBzKkKvWLX12eonIIoxJKG5M23NT8sdckxQKJ8VOZjDlYsj72LYY8wiNP56tO2HHYaIZDZDN3r+zYx4ZM4oCm4k4Dcy8Nx3+57UzCq/8sYzTjDAWNmK9MFOMEjZtzXpSoyA1ssCFlnZLJgbcVid7m6Kt782XXYTGacW7qJzfnZWr1/khCnAIR3ACHlxCFW6hBnUQMIRneIN358F5cl6c15/okpP/OYA/cj6+ATNDjSQ=</latexit> { <latexit sha1_base64="AJ2JguiG62BaTmEkYfW3ldG6Lv4=">AAAB6HicbZDLTgJBEEVrfCK+UJduOhITV2TG+FoS3bjERB4JTEhPUwMtPY9015gQwj/oyqg7v8cf8G9scBYK3tXpureTuhWkShpy3S9naXlldW29sFHc3Nre2S3t7TdMkmmBdZGoRLcCblDJGOskSWEr1cijQGEzGN5M/eYjaiOT+J5GKfoR78cylIKTHTU7KtBcYLdUdivuTGwRvBzKkKvWLX12eonIIoxJKG5M23NT8sdckxQKJ8VOZjDlYsj72LYY8wiNP56tO2HHYaIZDZDN3r+zYx4ZM4oCm4k4Dcy8Nx3+57UzCq/8sYzTjDAWNmK9MFOMEjZtzXpSoyA1ssCFlnZLJgbcVid7m6Kt782XXYTGacW7qJzfnZWr1/khCnAIR3ACHlxCFW6hBnUQMIRneIN358F5cl6c15/okpP/OYA/cj6+ATNDjSQ=</latexit> {
(Contains info. about 

 and )|ψ0⟩ Hr(+1)
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GOE Random Matrix Quenches (16/20)

 
 

|TFD(β = 0)⟩
|TFD0(β = 0)⟩
|00⟩

For the GOE case: (e.g. numerically averaging over 4 realizations of  with  and )Hr(±1) β̃ = 1 N = 1000

2412.16472
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N.B. Averaging over 
more realizations will 
smoothen the behavior 
after the slope (reduce 
oscillations), but unlikely 
to change the behavior 
drastically.

https://arxiv.org/abs/2412.16472


GUE Random Matrix Quenches (17/20)

Similar situation for GUE: (e.g. numerical average over 4 realizations of  with  and )Hr(±1) β̃ = 2 N = 1000

2412.16472

C
(1

)
ψ

(t)
/d

C
(3

)
ψ

(t)
/d

3

C
(2

)
ψ

(t)
/d

2
C

(4
)

ψ
(t)

/d
4

 
 

|TFD(β = 0)⟩
|TFD0(β = 0)⟩
|00⟩

N.B. Averaging over 
more realizations will 
smoothen the behavior 
after the slope (reduce 
oscillations), but unlikely 
to change the behavior 
drastically.
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Quantifying the  Peak (18/20)

One way to quantify the peak in  is by introducing the “peak parameter”  :C(m)
ψ (t) P(m)

ψ

2412.16472

P(m)
ψ :=

C(m)
ψ (tpeak) − C(m)

ψ

C(m)
ψ (tpeak)

where  is the infinite time-average of 
. 
C(m)

ψ
C(m)

ψ (t)
m 1

m 2
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Example for ,  
and for .

Hr(±1) ∈ GOE |ψ0⟩ = |TFD(β = 0)⟩
d = 1000

If the peak exists, then 
and .

C(m)
ψ (tpeak) ≥ C(m)

ψ
1 > P(m)

ψ ≥ 0
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The Peak in the Continuum Limit (19/20)2412.16472

In the continuum limit, we assume that the discrete Krylov basis index  can be mapped to a continuous 
coordinate, , where  is a small parameter (lattice spacing). Assuming a smooth dependence on , 

 ,  and .

n
n ↦ x = ϵn ϵ n

an ↦ a(xn) bn ↦ b(xn) ϕn(t) ↦ ϕ(xn, t)

In this case, the recurrence relation for  and Schrödinger equation become first-order differential 
equations.

ϕn(t)

For Hamiltonians belonging to -ensembles, and for  or , the Lanczos behave 
like randomly distributed variables, with ensemble average (in  the large-  limit) given by:

β̃ |ψ0⟩ = (1,0,…,0)T |TFD(β = 0)⟩
d

⟨a(x)⟩ = 0 ⟨b(x)⟩ = 1 −
x
ϵd

In the continuum limit [Fu, Pal, Pal, Kim (2024)] C(m)
ψ (t) = ∫ dEdω Jm(ω)ρ0(E, ω)ρ0(E, ω)eiωt

Jm(ω) =
2

ϵm−1 ∫
y(ϵL)

0
dy xm(y) b(y) cos(ωy) dy(x) = dx/(2ϵb(x)) ρ0(Ei, Ej) = ⟨Ei |ψ0⟩⟨ψ0 |Ej⟩

ω = Ei − Ej , E = (Ei + Ej)/2

https://arxiv.org/abs/2412.16472


The Peak in the Continuum Limit (20/20)2412.16472

Taking the GUE ensemble average of , and using the fact that: C(m)
ψ (t)

⟨ρ(Ei)ρ(Ej)⟩ = ⟨ρ(E)⟩δ(ω) + ⟨ρ(Ei)⟩⟨ρ(Ei)⟩(1 −
sin2(π⟨ρ(E)⟩ω)

(π⟨ρ(E)⟩ω)2 ) ⟨ρ(E)⟩ =
d

2π
4 − E2

One can find  at different time intervals (for the  TFD state), in particular around the peakC(m)
ψ (t) β = 0
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)
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(t
/d

)⟩
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t/d
[Fu, Pal, Pal, Kim (2024)]

C(2)
ψ /d2

C(1)
ψ /d

C(3)
ψ /d3

C(4)
ψ /d4

⟨C(1)
ψ (v)⟩ =

7π + 640v − 960v2 + (320 + 20π)v3 − 15πv4 + 3πv5

2(160 + 5π − 160v + 15πv2 − 5πv3)
, for v = t/d < 1 ,

⟨C(2)
ψ (v)⟩ =

(19π/7) + 640v2 − 1280v3 + (800 + 10π)v4 − (160 + 12π)v5 + 5πv6 − (5π/7)v7

160 + 5π − 160v + 15πv2 − 5πv3
, for v = t/d < 1 ,

(Wigner semicircle law)
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Quantum quenches within the framework of RMTs allows for a systematic study of Krylov state complexity and 
its generalizations for a variety of initial states in systems that transition from one chaotic phase to another.

Summary

 Higher-order generalized Krylov state complexities are more sensitive to the presence of the peak.

Building up on recent works, and using the continuum limit approximation and in the large matrix dimension 
limit, we can understand the origin of the peak due to the density-pair energy correlations = spectral rigidity.



Open Questions and Future Directions

• We need to refine our working definition of quantum chaos. “Scrambling is necessary but not sufficient for 
chaos” [Dowling, Kos, Modi (2023)]. What about the initial state/operator dependence? An interplay of 
quantum versions of ergodic hierarchies [Gesteau (2023), Ouseph et al. (2023)], free probability theory 
[Voiculescu (1985)] and Krylov subspace methods could open the way to understand these questions.

• “Krylov state complexity is not a measure of distance between states” [Aguilar-Gutierrez, Rolph (2023)]. Yet, its 
time average is related to an upper bound on Nielsen complexity [Craps, Evnin, Pascuzzi (2023)]. What is the 
precise connection between Krylov state complexity (and its higher-order generalizations) and these measures 
of quantum complexity?

• Another defining feature of holographic (and computational) complexity is the switchback effect. Is Krylov 
state complexity ( and its higher-order generalizations) sensitive to this phenomenon?

• Recent efforts have matched the wormhole (Einstein-Rosen bridge) length in Jackiw-Teitelboim (JT) gravity, 
with the Krylov state complexity of chord states in the triple-scaling limit of the double-scaled Sachdev-Ye-
Kitaev (DSSYK) model ([Rabinovici et al. (2023)]). Very recently, the late-time saturation of Krylov state 
complexity was studied in this same context [Balasubramanian et al. (2024)]. Do other holographic complexity 
proposals (complexity=anything) correspond to different generalizations of Krylov complexity? What about 
complexity in de Sitter space?



Thank you!



Additional Slides



Characteristic Features of Krylov state complexity

• TFD state at β → 0

• MFI• NNN deformation of XXZ
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