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Finite Black Hole Entropy

Bekenstein-Hawking Entropy: [Bekenstein (1973)][Hawking (1975)]
BH has finite entropy given by
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- This implies that the number of BH microstates is finite, and
therefore the spectrum is discrete
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- Thus perturbative Hilbert space which contains infinite local
degrees of freedom, must be modified non-perturbatively



Perturbative Hilbert Space & Failure

Black hole information paradox: [Hawking (1974)]
Hawking radiation entangled with the BH, appears to have much
larger entropy than allowed; more than BH entropy
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This is the sharpest example where the perturbative Hilbert space
breaks down badly

Question: How can we incorporate the effects of
non-perturbative Hilbert space?



Fix: Bulk Euclidean Wormholes

Discreteness from Euclidean Wormholes:
Adding Euclidean wormholes to the gravitational path-integral was
found to give unitary Page curve, resolving the paradox for the

Hawking radiation entropy
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Capture discreteness of the spectrum
Justified for low-dimensional gravity on AdS

[Penington (2019)][AImheiri, Engelhardt, Markolf, Maxfield (2019)][Almheiri, Mahajan, Maldacena, Zhao (2019)]
[Penignton, Shenker, Stanford, Yang(2019)][Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini (2019)]



Non-perturbative Hilbert space for
Black Hole Interior

Ultimate goals:
Physics at the horizon and interior
Infalling observer experience?
Mechanism for information restoration?

Perturbative Hilbert space for BH interior:
We can canonically quantize gravity, variables like timeshift and

interior volume are continuous
BH interior volume

Similar to information paradox, /\//m
this is not consistent with the R
finite BH entropy
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Two-sided black hole

Dual to Thermofield double state: [Maldacena (2001)]

1 .
ITFD) = e PE/2| ELY | ER) Two sided BH
VTR
Two sides are connected via smooth T"‘\t/‘\
horizon and non-traversable wormhole tr N ] e T tp
The state evolves non-trivially under
I R | Volume
H=H'+H
1 .

TFD(t)) = e~ (P E:/2 ply gl

I'TFD(1)) ﬁ(ﬁ); 1B E) A Vol
Classically, it has eternally linearly growing
interior volume >
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Both continuity and unboundedness are problems!



Length state without wormholes

In JT gravity, we know the quantum state corresponding to fixed
geodesic length state in perturbative Hilbert space

: : geodesic length L
Hamiltonian ‘
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P = [, is the conjugate
momentum

Overlap between the energy and the length eigenstate
(l|F) = 6_50/223/2KZ-2\/E(26_Z/2)

Here E denotes twice the single sided energy



Fixed timeshift state without
wormholes

In JT gravity, we know the quantum state corresponding to fixed
timeshift state in perturbative Hilbert space
Hamiltonian is the canonical | J timeshift o
momentum of & ‘ R T

- Qverlap between the energy and the timeshift eigenstate
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What we will do in this talk

[1] : Constructing length / timeshift states in non-perturbative
Hilbert space

[2] : New probes for non-perturbative length and timeshift

Generating function for the length and timeshift display dip-ramp-
plateau behavior
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- Timescale is the same as the spectral form factor
- These are probes of microscopic chaotic spectrum



What we will do in this talk

[3] : Non-perturbative observable

- We construct non-perturbative linear operators for the length and
the timeshift

- We keep track of the TFD time evolution and find:

Old BH — Uniform superposition of arbitrary length ER bridges
ER bridge J
ER bridges with various length
Old BH— Uniform superposition of BH and WH

Two sided BH BH WH BH
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Construction of
Non-perturbative length &
timeshift States



Bulk quantum state from Hartle-
Hawking prescription

Generalized Hartle-Hawking prescription:
The bulk wavefunction is given by the sum over all possible

geometries
* We seek for non-perturbative quantum state |/) which satisfies

Geodesic length /
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with all possible wormhole corrections, so geodesic length
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Geodesic length over-complete basis

Fixed geodesic length state is given in JT by [iiesiu et.al. (2024)]
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JT gravity wave function with ~ (Two-sided energy)
fixed length geodesic and energy

- The wavefunction is
(I|F) = 6_50/223/21(7:2\/@(26_”2)

- We take the microcanonical ensemble and the Hilbert space

dimension is finite
N’ = e D(Ey)AE



Timeshift

Timeshift 0 :
Average of time at the left and right boundaries, conjugate to the
Hamiltonian

Positive timeshift state corresponds to BH (expanding interior),
while negative timeshift state corresponds to WWH (contracting
interior)
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Non-perturbative Overlaps
and Probe of Chaos



Length and Timeshift distribution

Overlaps:
If length/timeshift states are orthogonal, the following overlaps

define probability distribution for length/timeshift
geodesic length L
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state two point function, corresponding to all genus contributions

20 S0 D (ENEs — E.
(D(E:)D(E;)) ~ Dpysi(E;) Doisi(E;) + e~ 5°8(E; — E;) Dpisic(E;) — e~ 250 == e wlz)(%%kEEé).()fz Ei)
1 J




Length distribution

Length:

At large / and sufficiently large AE, we can approximate

sin? ((tl — t)%)

sin? ((tl + t)%)
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Length Generating Function

Dip-ramp-plateau behavior:
Generating function exhibits dip-ramp-plateau behavior, reaching
plateau at the Heisenberg time
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As we take smaller q, it diverges and the ramp disappears, i.e.
early exponential decay is followed immediately by the plateau




Probe for Chaotic Spectrum

Generating function as probe for chaotic spectrum:
The length generating function can be written as
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We can apply this quantity in any system to probe “internal length”

- We studied SYK model and indeed find the dip-ramp-plateau
behavior

—— N=10,g=4,a=0.01

N=10,q=4,a=0.1
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plateau




Timeshift distribution

Timeshift:
It is directly related the spectral form factor
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Timeshift Generating Function

Positive and Negative part:

We divide into two parts;
0
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We again find the dip-ramp-plateau behavior, reaching plateau at
the Heisenberg time
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Spectral representation:
For any system
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Non-perturbative Length and
Timeshift Operators



Non-orthogonality

Non-zero Overlap for all states:
The overlap becomes constant for large |t —t;| or [t — |

This implies that
Length states cannot be eigenstates of an Hermitian operator.

For example no Hermitian operator like
Uty = Ul1)

Thus P(l,t) and P(d,t) are not probability distribution
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Non-orthogonality makes naive
resolution of identity ill-defined

[MM] [MM, Ruan, Shibuya, Yano (To appear)]
The length states give the resolution of identity on the disk
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However, with Euclidean wormholes

/_ al || #1  Wormholes

The left hand side is actually divergent for TFD state
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Construction of baby-universe
corrected length state wwu

We have non-orthogonal length state

|ll>, ’lg>, ‘l3>, (ll <ly <l3 < )

We identify corrected length states by removing shorter length
states by Gram-Schmidt procedure
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Continuing this process many times, we will reach
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for dimension N of the microcanonical window



Orthogonalization via replica trick

This Gram-Schmidt procedure seems hard to perform, but we can
do so by considering this manifestly positive operator

Sim] ==Y " [l;) (i
=1
whose nonzero positive eigenstates are spanned by
‘l1>NP7 ‘Z2>NP7 Ty ‘lm>NP (ll < l2 < < lm)

Thus the projector onto this subspace can be obtained via
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Non-perturbative length operator

The corrected length operator is now given by

N
ZNP _ ZZ’L‘Z’L>NP<Z’L‘NP
1=1
- The spectrum is unchanged, except it terminates at i=N

Length probability distribution is conveniently written as (assuming
continuity)
d -~

D) = Tr| P[]

Length probability distribution P(/) on TFD state is conveniently
written as

P[] = {TFD(1)| 5 Pl TED(1)



Length/timeshift Spectrum and
Probability

We consider perturbative expansion in terms of ¢;and o up to
second order. The results are already highly non-trivial

Spectrum:

Density of states turns out to be uniform but terminates at
Heisenberg time (in unit of ¢; and ¢)

R Length A g
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Length Probability

Probability distribution:
Early time: Classical peak + constant probability to have shorter

interior length. Classical linear growth, and small variance
Late time: Uniform probability, no peak. Saturation but large

variance
t<TH/2 t>3TH/2
Early time Late time
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This result is similar but slightly different from [Stanford, Yang (2022)]



Timeshift Probability

Probability distribution:

Early time: Classical peak + constant probability to have smaller
timeshift absolute value. Classical linear growth, and small variance
Late time: Uniform probability, no peak. Saturation but large

variance
t<TH/2 t>3TH/2
Early time Late time 1
s 5(t—0) (1 ~ %) A Ty
t—a6 T
T
.................................................. > 5 B T L PP PP PR PPN PP PP PP PRP PPN N 5
-t 0 t —Tx/2 0 Ty /2

In particular, it is equally possible to have BH and WH at late

time (Susskind’s grey hole) 1



Length in DSSYK [Okuyama, MM, Mori, work in progress]

We can play the same game for the ETH matrix version of the
DSSYK [Jafferis et.al. (2022)]

DSSYK itself has too large multi-boundary correlation
Instead consider the matrix model with the same leading density

of states
The behavior of the length displays growth-slope-plateau

behavior similar to the spread complexity

Slope

Plateau
Growth

..............

Time vs length n: N=3



Summary and Future Directions

[Summary]
We constructed non-perturbative length and timeshift states and
operators, seeing growth-slope-plateau behavior

Proposed new quantities probing “interior length” in arbitrary
systems, seeing dip-ramp-plateau behavior

[Future directions]
Non-perturbative Hilbert space in de Sitter space

Generalization to “bulk complexity measures” examples like
Wheeler-de-Witt action [MM, Ruan, Shibuya, Yano (Work in progress)]
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Appendix



Applications to Bulk Physics?

Transition from BH to white hole(WH) [Stanford, Yang (2022)]
We can investigate the transition probability from BH into WH

BH can get younger, by emitting baby
universes
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Further investigation may uncover observer | ... R time
experience in the interior, like firewall
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Spectral Complexity and Length?

Limit:
Taking small a gives the spectral complexity [Gabor, liesiu, Mezei (2021)]
Spectral complexity Divergence
2 —al
L d(em ™)y 1 — cos ((E7 — E9)t) 1
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However, there are several problems relating the length and the
spectral complexity

Length states are not orthogonal to each other
Divergent in a
- Qualitatively different from finite a (only classical + plateau)

These suggest that the interior length can be probed well only
when a is sufficiently large



Timeshift?

Pathological Limit:
If we consider the natural definition

L . d —ad ad
(8) := = lim == ((e™) 1+ ()¢
we arrive at
(6) =0

This is not reproducing the classical early time behavior (6) ~ ¢

- Again this suggests the above limit does not lead to faithful bulk
description, and highly dependent on regularization scheme

- Only when a is sufficiently large, we can use it to probe the bulk



