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Entanglement

• Consider a bipartite system A ∪ B in a state ρAB = |ψAB⟩⟨ψAB | with density matrices ρA
and ρB . Such a state is called separable if it can be expressed as

ρA∪B =
∑
i

pi

(
ρiA ⊗ ρiB

)
,

∑
i

pi = 1, pi ≥ 0.

Otherwise it is called entangled.

• If a state has density matrix ρ, then

◦ Tr(ρ2) = 1 ⇐⇒ pure state.
◦ Tr(ρ2) < 1 ⇐⇒ mixed state.

• Mixed state =⇒ indication of a lost part of the system
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Entanglement

• Consider a bipartite pure state ρAB .

• Entanglement entropy (EE) is defined as the von Neumann entropy of the reduced density
matrix ρA = TrB ρAB

S(A) = −Tr (ρA logρA) = −
∑
λi

λi logλi and S(A) = S(B)

where, λi are the eigenvalues of ρA.

• For a separable state: |ψAB⟩ = 1√
2
(|0⟩+ |1⟩) 1√

2
(|0⟩+ |1⟩) = 1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)

◦ eigen values of ρA or ρB are 0 and 1
◦ S(A) = 0 = S(B)

• For an entangled state: Bell state |ψAB⟩ = 1√
2
(|00⟩+ |11⟩)

S(A) = log 2
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Motivation A

• What about (genuine) multipartite entanglement!

◦ characterization and classification of states

◦ performing quantum tasks

• How to measure it? (simply)
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Multipartite entanglement

• Fully seperable states,

|ψ⟩A1,A2...AN
= |ϕ⟩A1

⊗ |ϕ⟩A2
⊗ |ϕ⟩A3

· · · · · · ⊗ |ϕN⟩AN

• k-seperable states,

|ψ⟩A1,A2...AN
= |ϕ⟩B1

⊗ |ϕ⟩B2
⊗ |ϕ⟩B3

· · · · · · ⊗ |ϕN⟩Bk

where ∪jBj = ∪iAi .

• Genuine multipartite entanglement =⇒ No seperability
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Tripartite entanglement

• Fully seperable states,

|ψ⟩ABC = |ϕ⟩A ⊗ |ϕ⟩B ⊗ |ϕ⟩C

• Biseperable states,

|ψ⟩ABC = |ϕAB⟩ ⊗ |ϕC ⟩
|ψ⟩ABC = |ϕA⟩ ⊗ |ϕBC ⟩
|ψ⟩ABC = |ϕAC ⟩ ⊗ |ϕB⟩

• A state possess genuine tripartite entanglement iff it is not fully seperable or biseperable.
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Tripartite entanglement: classification

[Dur,Vidal,Cirac : 2000]

• Four different classes are observed.

• Fully Separable state:

◦ |ψ⟩ABC = |000⟩
▶ A, B and C are not entangled with each other.

• Biseparable state:

◦ |ψ⟩ABC = 1√
2
(|000⟩+ |110⟩) = |Bell⟩ ⊗ |0⟩

▶ A and B are maximally entangled but C is not entangled with others.

• GHZ state:

◦ |ψ⟩ABC = 1√
2
(|000⟩+ |111⟩)

▶ no residual bipartite entanglement between A and B if we trace out C .

• Werner state:

◦ |ψ⟩ABC = 1√
3
(|001⟩+ |010⟩+ |100⟩)

▶ maximum residual bipartite entanglement between A and B if we trace out C .
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Genuine Multipartite Entanglement (GME) measure

[Vedral,Plenio,Rippin,Knight : 97] [Ma,Chen,Chen,Spengler,Gabriel,Huber : 11]
[Xie,Eberly : 21]

• A genuine multipartite entanglement measure, R, is defined by the following properties:

1. R should be zero for any fully separable state.

2. R should be zero for any k-separable state.

3. R should be strictly positive for all non-k-separable states.

4. R should be invariant under local unitaries.

5. R should be non-increasing on average under local operations and classical commu-
nication (LOCC).

6. In 3 qubit case, RGHZ > RW (weaker condition)

• Conditions (1), (2), (3), (4) and (5) are necessary for a measure to accurately characterize
genuine multipartite entanglement.

• Condition (6) is motivated by the experimental evidence.

• A measure satisfying all the six conditions is known as a “proper” GME measure.
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Use Entanglement Entropy !!!

[Nielsen,Kempe : 00] [Gadde,Krishna,Sharma : 23]

• Can we combine entanglement entropy of various subsystems and define a multipartite
entanglement measure?

• Examples are,

I (A : B) = S(A) + S(B)− S(AB)

I3(A : B : C) = S(A) + S(B) + S(C)− S(AB)− S(BC)− S(AC) + S(ABC)

• Consider the following states,

|ψ⟩ABC =
1
√
3

(
|000⟩+

√
2|111⟩

)
|ϕ⟩ABC =

1
√
3
(|001⟩+ |010⟩+ |100⟩)

• Each of the reduced density matrices have exactly the same spectrum.

• Impossible to distinguish |ψ⟩ and |ϕ⟩ utilizing any combination of entanglement entropy.
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Reflected Entropy

[Dutta,Faulkner : 19]

• Purification: A bipartite quantum system A∪B in a mixed state ρAB is purified by embedding
the system A ∪ B in a larger tripartite system A ∪ B ∪ C .

• Purification is not unique =⇒ problems with entanglement of purification

• Canonical purification: Purification by doubling the Hilbert space HAB to HABA∗B∗ .
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Reflected Entropy

[Dutta,Faulkner : 19]

• Reflected entropy is defined as,

SR(A : B) = S(AA∗).

• A ∪ B in a pure state : SR(A : B) = 2S(A) = 2S(B)

• The reflected entropy satisfy the bound,

min{2S(A), 2S(B)} ≥ SR(A : B) ≥ I (A : B).

where I (A : B) = S(A) + S(B)− S(AB).

• The lower bound comes from the strong subadditivity of A, A∗ and B,

I (A : BB∗) ≥ I (A : B)

• The upper bound comes from the positivity of the mutual information,

I (A : A∗) ≥ 0, I (B : B∗) ≥ 0

• Reflected entropy distinguishes the isospectral states. [JKB,Giataganas,Mondal,Wen : 23]
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Markov gap and problems

[Akers,Rath : 19][Hayden,Parrikar,Sorce : 21]

• The Markov gap is defined as

h(A : B) = SR(A : B)− I (A : B).

• Following the lower bound of reflected entropy, h(A,B) ≥ 0.

• Example:

◦ Bell state =⇒ h(A : B) = 0

◦ Biseparable state =⇒ h(A : B) = 0

◦ W state =⇒ h(A : B) = .57

◦ GHZ state =⇒ h(A : B) = 0 !!!
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Latent entropy (L-entropy)

[JKB,Malvimat,Yoon : 24]

• The bipartite Latent Entropy for two parties is defined as

ℓAB = min{2S(A), 2S(B)} − SR(A : B).

• ℓAB is strictly positive following the upper bound of the reflected entropy.

• Multipartite L-entropy is defined as the geometric mean of bipartite L-entropy for all possible
bipartitions.

ℓA1A2···An =

∏
i<j

ℓAiAj

 2
n(n−1)

.

• The bound on the bipartite L-entropy is,

0 ≤ ℓAiAj
≤ Min{2 log[dAi

], 2 log[dAj
], log[dAiAj

]}

where dA is the dimension of the Hilbert space of A.

• Spin off: We define generalized Markov gap as,

hA1A2···An =

∏
i<j

hAiAj

 2
n(n−1)

.
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L-entropy

[JKB,Malvimat,Yoon : 24]

• Fully seperable state: |ψ⟩ABC = |000⟩

◦ SR(A : B) = SR(B : C) = SR(A : C) = S(A) = S(B) = S(C) = 0

◦ ℓABC = 0 =⇒ (condition 1)

• Biseparable state: |ψ⟩ABC = 1√
2
(|000⟩+ |110⟩) = |Bell⟩ ⊗ |0⟩

◦ SR(A : B) = 2S(A) = 2S(B)

◦ SR(A : C) = SR(B : C) = S(C) = 0

◦ ℓABC = 0 =⇒ (condition 2)
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L-entropy

[JKB,Malvimat,Yoon : 24]

• GHZ state: |ψ⟩ABC = 1√
2
(|000⟩+ |111⟩)

◦ SR(A : B) = SR(B : C) = SR(A : C) = S(A) = S(B) = S(C) = 1

◦ maximum tripartite L-entropy, ℓABC = 1 =⇒ (condition 3)

• W state: |ψ⟩ABC = 1√
3
(|001⟩+ |010⟩+ |100⟩)

◦ SR(A : B) = SR(B : C) = SR(A : C) = 1.49

◦ S(A) = S(B) = S(C) = 0.92

◦ ℓABC = 0.35 =⇒ (condition 3)

• ℓAiAj
is invariant under local unitaries =⇒ (condition 4)

• ℓAiAj
is non-increasing under LOCC =⇒ (condition 5)

• ℓABC (GHZ) > ℓABC (W ) =⇒ (condition 6)

• Multipartite L-entropy is a measure of proper genuine multipartite entanglement.

• For four-party system, the multipartite L-entropy obtains the maximum value for cluster
states.
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Motivation B

• Identification of special class of states !!!

• Does this identification agrees well with the existing QIT results ???
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k-uniform states

[Scott : 04][Facchi,Florio,Marzolino,Parisi,Pascazio : 10]

• A n-party pure state is said to be k-uniform iff any k-party reduced density matrix is
maximally mixed.

• k-uniform states are very important in the context of multipartite entanglement.

• For any n-party state, k ≤ ⌊ n
2
⌋

• L-entropy maximizes for 2-uniform states where n ≥ 5. [JKB,Malvimat,Yoon : 24]
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2-uniform states

[JKB,Malvimat,Yoon : 24]

[Pang,Zhang, Lin,Zhang : 19]

• d is the dimension and N is the number of parties.

• Using an optimization procedure on L-entropy, we found various 2-uniform states.
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Motivation B.2: 3-uniform states

[Pang,Zhang, Lin,Zhang : 19]

• Can we find a variant of L-entropy to detect 3-uniform state?

• More ambitious goal: find k-generalized L-entropy to establish a gradation of k-uniform
state.
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Motivation C

• Holography

◦ structure of entanglement in holographic states

◦ geometric description

◦ multipartite entanglement in presence of black holes
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Holography

• Entanglement wedge cross section (EWCS) : codimension two surface with minimized area
dividing the wedge for A ∪ B.

• For a disconnected wedge, EWCS = 0

• Reflected entropy is twice the area of EWCS [Dutta, Faulkner: 19]

SR(A : B) = 2A [ΣAB ]
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Holographic L-entropy

[JKB,Malvimat,Yoon : 24]

• The holographic bipartite L-entropy is given as,

ℓAB =
Min{Area [γA] ,Area [γB ]} − Area [ΣAB ]

2G
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Black hole evaporation: Page curve

• Consider the multiboundary wormhole model with three boundaries

• Here one boundary will be considered as the black hole (B) and the other two as the two
radiation regions (R1 and R2).

• Black hole evaporation procedure can be obtained by decreasing the size of B.
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Black hole evaporation: Page curve

[Akers,Engelhardt,Harlow : 19] [JKB,Malvimat,Yoon : 24]

• Consider the bipartition R1 and R2.

• EWCS, ΣAB = MinA{γR1
, γ′, γR2

}

• ℓR1R2
= 2Min{A

[
γR1

]
,A

[
γR2

]
} − 2A [ΣAB ]
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Page curve

[JKB,Malvimat,Yoon : 24]
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• No multipartite entanglement until the Page time.

• It reaches the maximum when A
[
γR1

]
= A [γB ] = A

[
γR2

]
• ℓmax

R1BR2
= A

[
γR1

]
= A [γB ] = A

[
γR2

]
=⇒ all the degrees of freedom are involved in

constructing the multipartite entanglement.

• Complete evaporation of the black hole makes the system bipartite and the multipartite
entanglement vanishes.
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Application

[JKB,Malvimat,Yoon : 24]

• Nearest neighbors Ising model H = Jy
∑

i σ
i
yσ

i+1
y : 8-party L-entropy

(a) Initial state fully separable (b) Initial state is |GHZ⟩8 (c) Initial state is |W ⟩8

• SYK H =
∑

i<j<k<l Jijklχ
iχjχkχl : n-party L-entropy

(a) n = 6 (b) n = 8 (c) n = 10
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Wrap up

Conclusions

• Propose a new measure for genuine multipartite entanglement using the reflected entropy

• It maximizes for GHZ in three party, cluster in four party and 2-uniform states in n ≥ 5
party.

• Obtain the Page curve for black hole evaporation process

• Explore the measure in the context of random states and multipartite states at a finite
temperature. (Not in this talk)

Future

• Find higher uniform states utilizing generalized L-entropy

• L-entropy in generic multiboundary wormholes

• Approach some specific sectors of multipartite entanglement
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Thank you
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