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Cosmological Singularities in Holography

* Cosmological backgrounds pose several challenges — particularly when they
involve space-like singularities, as in Big Bang- Big Crunch singularities, or in the
interior of Schwarzschild black holes.

* From the low energy effective theory point of view these backgrounds imply an
“end of time”, or “beginning of time” —these are puzzling from the point of view of

our usual notion of time evolution in physics.

* Overthe past several decades there have been many attempts to understand
this puzzle by considering situations where the gravitational descriptionis
emergent —from a non-gravitational holographic theory, e.g. Matrix Theory,
AdS/CFT correspondence, or the holographic description of 2d String Theory in
terms of the c=1 Matrix Model.



* One hope inthese investigations is that while time evolution in the low energy
gravitational description is problematic, there is a smooth time evolution in the
more fundamental holographic description.

* Forexample, inthe AdS/CFT correspondence such cosmological background
results from a quantum quench in the boundary field theory —e.g. atime
dependent coupling constant in the N=4 SYM.

* Normally such a quantum quench starting from the ground state results in black
hole formation. However, in some situations one gets a space-like singularity
which extends to the boundary
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* This setup has been useful in understanding aspects of the approach to the
singularity — as long as we do not go all the way to it

» Holographic Correlators encode some signatures of the singularity (Engelhardt,
Hertog, Horowitz (2005-2015).

» Complexity = Area decreases as we approach the singularity. (Barbon &
Rabinovici (2015)

» Path Integral complexity monotonically decreases in a universal fashion,
regardless of the Kasner exponents (FP. Caputa, D. Das & S.R.D. (2021))

* However, the main question of a continuation of the holographic theory through
what appears as a space-like singularity has not been resolved.

* There have been some suggestions of such a continuation (Craps, Hertog, Turok)
— but things are not quite clear.

* If we have NULL singularity, a continuation is indeed possible both in AdS/CFT
(Chu & Ho, S.R.D., J. Michelson & S. Trivedi) and in similar models in Matrix String
Theory (Craps, Sethi & Verlinde)



The difficulty in resolving this issue is two-fold
1) Typically, the holographic theory is not solvable.
2) String Theory effects become important —and not much is calculable
in the bulk String Theory.

Two-dimensional String Theory provides an example where we can make substantial
progress with these two problems.

The holographic description is well known —this is the quantum mechanics of a single
Hermitian Matrix. The duality of this theory with the two-dimensional string was
developed in the early 1990°s and recent work of the past 3-4 years has solidified this
duality to a remarkable extent.

In fact, in the beginning of this century there were several works on developing time
dependent backgrounds in the c=1 Matrix Model (Alexandrov, Kazakov & Kostov (2002);
Karczmarek & Strominger (2004); S.R.D., F. Davis, F. Larsen & P. Mukhopadhyay (2004)).

In particular, there were solutions which have space-like boundaries (S.R.D. & J.
Karczmarek).



* More recently, there has been improved understanding of the String Theory, both
at the level of world-sheet and at the level of String Field Theory (Balthazar,
Rodriguez & X. Yin (2017-2022); A. Sen (2000-2024).

* This improved understanding has been applied to a class of time dependent
backgrounds - leading to world-sheet calculations of the S-Matrix and particle
production (Rodriguez (2023); Balthazar, Chu & Kutasov (2023)).

* It turns out that while for some of these backgrounds the world-sheet theory
provides reasonable results for scattering amplitudes and for particle
production, for a perhaps more interesting class, the problem cannot be posed
on the world-sheet.

* In this talk | will resort to the Matrix Model description to understand what is
going on in these problematic cases.



Time dependent background in 2d String Theory

( see review A. Jevicki, hep-th/9309115)

* The worldsheet action for 2d String Theory around the standard background is
given by
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* The worldsheet field X (z, Z) is identified as time in the target space, while the
Liouville field (z, z)is treated as a space coordinate.

* The physical vertex operators for propagating fields are given by
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* The standard target space background has a flat metric, a linear dilaton and a
“massless tachyon” field represented by these vertex operators.



The linear dilaton gives rise to a position dependent string coupling
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Correlation functions of the vertex operators provide a “wall” S Matrix of modes

coming in from the asymptotic region ¥ — o0 and getting reflected from the
Liouville wall.

In addition to these propagating modes, there are a set of discrete modes —these
have imaginary values of the energy and Liouville momenta
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There are also modes with the opposite dressing, which are thought of as
providing non-trivial backgrounds
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* The time dependent background is described by the following addition to the
world-sheet action (Balthazar, Chu & Kutasov, 2023)
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* Where the Euclidean momentum r is taken to be real, arbitrary.
* This modifies the Liouville wall —the worldsheet potential is now
V= —pe V¥ 4 Ao V2ATTet X
* This corresponds to an accelerating Liouville wall —when r>1 the wall in fact
moves at superluminal speeds at late time.

* The calculations of Balthazar are in practice involved bringing down the
deformation in a power series in the parameter



* Forr<1there are asymptotic past and future null infinities.

* Various processes can now be calculated — scattering off the wall as well as
particle production from the wall
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* Whenr > 1, however, there is no asymptotic future infinity.
* Thisis because the Liouville wall accelerates to super-luminal speeds.
* The meaning of world-sheet calculations become unclear.

* In the following we will resort to the holographic description in terms of Matrix
Quantum Mechanics to get a physical picture of what is happening.
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The ¢c=1 Matrix Model

* The holographic description of this String Theory is given by the gauged quantum
mechanics of asingle N x N matrix M,;(t) inthe double scaling limit,
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* One can pick a gauge in which the matrix is diagonal. Because of a non-trivial
measure in the change of variables from the matrices to the eigenvalues
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* The eigenvalues behave as free fermions moving in one dimension in the
presence of an inverted oscillator potential. These are D particles in the String
Theory.

* The ground state is the filled Fermi sea.
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* The action of the second quantized fermion field «(x,t) is
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* Excitations are particle-hole pairs which come from the asymptotic region and
scatter off the potential.

* In the following we will rescale things to set 2 = 1



* In a phase space these are deformations of the Fermi surface, which is given by
the equation 5 5
x-—p =1

* Even though each fermion is free —the decomposition in terms of bosonic
degrees of freedom is non-trivial, because of the non-relativistic dispersion
relation - resulting in an interacting bosonic theory.



* The bosonic description is Collective Field Theory of the density of eigenvalues
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* To leading order in large N
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* The filled fermi sea is then described by a static classical solution
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* Expanding around this
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* One gets a non-polynomial action for the fluctuations. However, the Hamiltonian
expressed in terms of the field and its canonically conjugate momentum is cubic
to leading order.



* The quadratic part of the fluctuation action is
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e The cubic interaction is
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* The quadratic part clearly shows that the fluctuation field is a relativistic
massless scalarin 1+1 dimensions.

* The space of eigenvalues, x, is an emergent direction.

* Itis useful to transform to coordinates in which the underlying metric is
conformal to Minkowski metric. This is achieved by the transformation
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* The quadratic and cubic terms then become
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 The asymptotic regions are ¢ = =00 , which correspond to the two sides of the
potential. The coupling becomes strong at ¢ = 0 - which is like a wall.

* The Penrose diagram of the emergent space-time is very simple




* The effective coupling in the asymptotic region is
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* Which motivates the identification of ¢ with the zero mode of the worldsheet
Liouville field, ¥ and the time of the matrix model with X (S.R.D. & A. Jevicki)
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* However, it turns out that a more precise identification is with the macroscopic

loop operator -
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* Inthe asymptotic region this agrees with the so called “leg pole” Kernel which
relates e.g. right moving Tachyon field to the collective field
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* These give different notions of emergent space which differ from each other at
the string scale.

* We are interested in the global nature of the space-time. The Penrose diagrams
we draw should be “fuzzed over” the string scale.

* The leg pole transforms are, however, necessary to establish the equivalence of
S-Matrix of the Matrix Model with the world-sheet String Theory (Demeterfi,
Jevicki & Rodrigues; Gross & Klebanov; Sengupta & Wadia; Moore, Plesser &
Raamgoolam).



Time dependent backgrounds in the Matrix Model

* There is a natural identification of the deformation of the matrix model
Hamiltonian which corresponds to the addition of a time dependentterm in the
world-sheet action of the type we considered
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* |In the Matrix Model this is represented by a deformed Fermi sea described by the
equation 5 5 .
—p 4+ X (p—x) =1
* Which follows from the identification of the usual vertex operators with (Jevicki)
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* Whenr is a positive or negative integer, these are deformations by a spectrum
generating Wi, symmetry algebra of the theory.

* The identification of the deformation vertex operator with the deformation of the
Matrix Model Hamiltonian follows from the realization of this symmetry in the
Matrix Model (Avan & Jevicki) and on the worldsheet (Witten).



A digression: Quantum Quench

* To see what is going on, we will now use some earlier results in a slightly different
problem to explore the global structure of the emergent space-time.

* Thisis the problem of guantum quench in the Matrix Model (S.R.D., S. Hampton
and S. Liu, 2020) —where the coupling of the theory is made time-dependent
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* By changing the definition of time dt = £(7)

* One can perform a double scaling limit
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* The corresponding collective field theory is
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* Itturns out that one can go to a moving frame and remove the time dependence
X tdt’
p(t)] (t)

* If the function p(t) obeys the non-linear equation - related to a modified
Ermakov-Pinney equation
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* The action becomes
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* Therefore, starting from a static solution we can generate time dependent
solutions by solving the modified Ermakov-Pinney equation.

* For a quench function which interpolates between constant values of the
coupling at early and late times, we need to solve the modified EP equation with
adiabatic boundary conditions at early times.

* Oncethatis done, the response to the quench is given by the time dependent
solution of collective field theory,
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* The nature of the emergent space-time can be gleaned from the action for
fluctuations around this solution

(1) = ol 1) + “ (1)
* The quadratic actionis
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e Thisis the action of a massless scalar which is in a metric which is conformal to

1 9,y
ds? = —di? + (d 4+ dt)
’ (70,02 \ 8.6,

* Forthe static geometry, the space of eigenvalues, x, eventually becomes the
emergent space. Now we see that x = constant lines need not be always time-
like. They are time-like only when

(0:¢0)? < 7°(8:¢0)"




* The cubic interaction of the fluctuations is given by
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Back to our problem

* Presently, we are not interested in quantum quench - rather we are looking at
solutions of the collective field theory with the standard constant inverted
oscillator potential which represent excited states and hence time dependent
geometries.

* However, the method we outlined works for constant potentials as well —we just
need to solve the equation for p(t) bysetting f(¢) = 1.

* Furthermore, we can think of a rapid quantum quench as a way to prepare an
excited state —in fact the late time behavior would be given by one of the
solutions with constant potential.



* Coming back to the world-sheet deformation
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* The world-sheet theory became confusing forr > 1.

* We will now realize the r =2 deformation as a time dependent solution of the
type we just discussed, and use this to figure out what is really happening.

* The solution corresponding to r=2 is given by the function

p(t) =1+ de*
* This corresponds to a Fermi surface given by
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* When \ > () the moving Fermi surface is of the form

* Fermions on one side of the potential remain on that side.

* Astime elapses, they turn back at locations further and further away from the
maximum of the potential.

* The edge of the surface moves to the asymptotic infinity at long times.



* When A\ < () fermions spill overto the other side, and the wall disappears at a
finite Matrix Model time

\\ \\ //
~ s
~ N\ 7
NOON s 7
N \ VR
N ol

* Time evolution continues smoothly beyond this point — at late times the fermi
level asymptotestothe p = 7 line.



The Emergent Space-time

* To find the global nature of the emergent space-time itis convenient to go to
coordinates in which the metric is conformal to Minkowski space. This is
provided by the following transformations
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* |nthese coordinates the metric is conformal to
ds® = —dT?* + dg*



* For \ > () weseethatas t — oo thetime T'reaches T =0

* Normally we would have continued the space-time beyond this time. However,
this is the end of time evolution in the Matrix Model.

* The Matrix Modelis telling us to stop time evolution at this time.

* The boundary of the emergent space-time is space-like !




* To probe a little more what is happening at this time, consider the cubic
couplings
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* The three different terms have coefficients which all diverge in the limitof ¢t — o0
or 1'=20
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* Thisis a space-like singularity —a BIG CRUNCH space-time.



* Perturbative collective field theory — which is related to perturbative string theory
is not useful here. However more exact methods should remain useful.

* However, the holographic description in terms of fermions (D branes) remains
well defined — since this happens when the matrix model time is infinite.



When )\ <« (0 somethingvery different happens.

1
Now the function p(t) hits a zero at finite Matrix Modeltime, t = to = —= log(—\)

which however correspondsto 1' = ¢ 2

From the point of view of emergent space-time, it is natural to stop time
evolution here. In fact, at this time we have reached a null infinity.

This would have been fine. However, the fundamental description is the Matrix
Model - and clearly the system continues to evolve after this time, when the

function p(t) becomes negative.

We interpret this to mean that we need to attach another piece of space-time, in
which there is no wall which separates the two sides of the potential.






* There is a good semi-classical description in terms of a different collective field
which is obtained by subtracting the upper edge of the right side fermi surface
from the lower edge of the left side Fermi surface
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* Finally, we reach the end of Matrix Model time evolution, ¢ — oo . Thisisa
space-like boundary at a finite time in the emergent space-time.
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* Asinthe previous case, the coupling diverges there —one has a BIG CRUNCH.

* The excitations, represented by fluctuations of the collective field, all fall into
this singularity.

* From the point of view of the 2d world-sheet theory, this manifests itself as the
absence of a future asymptotic region.



Outlook

* The time dependent deformation in the world-sheet theory was of the form
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* Thisis for any real, positive r and there was a problem in interpreting this theory
forr>1

* The Matrix model description can be treated analytically for integer values of r —
we explored this in detail for r =2 and found that the difficulties in thinking about
the world-sheet theory are related to the development of space-like singularities
in a semi-classical description.



For non-integer r < 2 involves fermi surfaces which are described by equations
which have non-integer powers of the light cone variables in phase space

PANE P
In these cases, itis possible to study the problem numerically (Balthazar et.al.)

It is also possible to develop the semi-classical collective field theory
description using the usual map between Fermi surface variables and the
collective field.

We are currently studying this — we expect results which are quite similar to what
we obtained for r =2

For higher integer powers of r the Fermi surfaces are not quadratic profiles —
leading to “folds” on the fermi surface. These are highly “quantum” states.

There is still a gquantum collective field description —though an effective semi-
classical description requires introduction of more classical collective variables.



* The physics at times close to the space-like “singularity” is clearly non-
perturbative in the string coupling, which is why it is invisible in perturbative
String theory.

* Exactresults in collective field theory are known (Avan & Jevicki) in terms of
exact creation and annihilation operators
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* Analytic continuation to imaginary values of n have been useful in understanding
properties of scattering amplitudes: maybe continuation to arbitrary real values
could be useful as well.



Even though the fermionic description is still free, there is an important caveat
which makes probing this region non-trivial.

This has to do with finite N effects.

Our entire discussion has been in the double scaling limit, in which N = oc and
the string coupling is held fixed.

The filled Fermi surfaces shrank or expanded - this of course cannot happen for
any fixed N, however large.



* In fact, the inverted oscillator potential has to be regulated for finite N by e.g.
hard walls which are O(vVN) away. These come from the non-linear terms in the
Matrix Model potential which get scaled away in the string double scaling limit.

* Fermions reaching this wall will get reflected back.



* As aresult, the time dependent Fermi surfaces look like
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At early enough times, this effect does not modify the bulk physics.
However, at times close to the singularity this effect could become important.

From the point of view of the parent Matrix Model this is the usual problem of
trace relations —the collective field which we used
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is overcomplete.

What we are finding is that at late times one needs a more accurate description
which incorporates these trace relations (Jevicki; Corley, Jevicki & Ramgolam).

It is interesting that we may need to this effect — called the “Stringy Exclusion
Principle” in the context of AdS/CFT is necessary to fully understand what is
going on.



* The main lesson in this two-dimensional theory is that it is possible to have
situations where a semi-classical description indicates a space-like singularity,
but an underlying holographic descriptionis in principle well defined.

 Two dimensional models are of course too simple — however two-dimensional
models of gravity have been useful in teaching us about the black hole
evaporation problem.

* Maybe, with some more thought one can make progress in understanding space-
like singularities.
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